




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
霞山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A2BCD42 已知函数f(x)=x22x+3在0,a上有最大值3,最小值2,则a的取值范围( )A1,+)B0.2C1,2D(,23 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )ABCD4 如果过点M(2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是( )ABCD5 已知函数 f(x)的定义域为R,其导函数f(x)的图象如图所示,则对于任意x1,x2R( x1x2),下列结论正确的是( )f(x)0恒成立;(x1x2)f(x1)f(x2)0;(x1x2)f(x1)f(x2)0;ABCD6 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 7 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=08 设x,y满足约束条件,则目标函数z=ax+by(a0,b0)的最大值为12,则+的最小值为( )ABC6D59 如图,在正四棱锥SABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:EPBD;EPAC;EP面SAC;EP面SBD中恒成立的为( )ABCD10正方体的内切球与外接球的半径之比为( )ABCD11已知直线l平面,直线m平面,有下面四个命题:(1)lm,(2)lm,(3)lm,(4)lm,其中正确命题是( )A(1)与(2)B(1)与(3)C(2)与(4)D(3)与(4)12如图所示,已知四边形的直观图是一个边长为的正方形,则原图形的周长为( ) A B C. D二、填空题13经过A(3,1),且平行于y轴的直线方程为14已知函数,其图象上任意一点处的切线的斜率恒成立,则实数的取值范围是 15设是空间中给定的个不同的点,则使成立的点的个数有_个16若与共线,则y=17已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是18已知是数列的前项和,若不等式对一切恒成立,则的取值范围是_【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力三、解答题19(本小题满分12分)某市拟定2016年城市建设三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对三项重点工程竞标成功的概率分别为,已知三项工程都竞标成功的概率为,至少有一项工程竞标成功的概率为(1)求与的值;(2)公司准备对该公司参加三个项目的竞标团队进行奖励,项目竞标成功奖励2万元,项目竞标成功奖励4万元,项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用20已知函数f(x)=sin(x+)(0,02)一个周期内的一系列对应值如表:x0y101(1)求f(x)的解析式;(2)求函数g(x)=f(x)+sin2x的单调递增区间21武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25),第2组25,30),第3组30,35),第4组35,40),第5组40,45,得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率22已知f(x)=x2(a+b)x+3a(1)若不等式f(x)0的解集为1,3,求实数a,b的值;(2)若b=3,求不等式f(x)0的解集23若an的前n项和为Sn,点(n,Sn)均在函数y=的图象上(1)求数列an的通项公式;(2)设,Tn是数列bn的前n项和,求:使得对所有nN*都成立的最大正整数m24已知函数f(x)=2x24x+a,g(x)=logax(a0且a1)(1)若函数f(x)在1,3m上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)求实数a的值;设t1=f(x),t2=g(x),t3=2x,当x(0,1)时,试比较t1,t2,t3的大小 霞山区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(aa1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2F1MF2=,由余弦定理可得4c2=(r1)2+(r2)22r1r2cos,在椭圆中,化简为即4c2=4a23r1r2,即=1,在双曲线中,化简为即4c2=4a12+r1r2,即=1,联立得, +=4,由柯西不等式得(1+)(+)(1+)2,即(+)24=,即+,当且仅当e1=,e2=时取等号即取得最大值且为故选C【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键难度较大2 【答案】C【解析】解:f(x)=x22x+3=(x1)2+2,对称轴为x=1所以当x=1时,函数的最小值为2当x=0时,f(0)=3由f(x)=3得x22x+3=3,即x22x=0,解得x=0或x=2要使函数f(x)=x22x+3在0,a上有最大值3,最小值2,则1a2故选C【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次 函数的基本方法3 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,故恰有两个球同色的概率为P=,故选:B【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题4 【答案】D【解析】解:设过点M(2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k22=0,过点M(2,0)的直线l与椭圆有公共点,=64k44(2k2+1)(8k22)0,整理,得k2,解得k直线l的斜率k的取值范围是,故选:D【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用5 【答案】 D【解析】解:由导函数的图象可知,导函数f(x)的图象在x轴下方,即f(x)0,故原函数为减函数,并且是,递减的速度是先快后慢所以f(x)的图象如图所示f(x)0恒成立,没有依据,故不正确;表示(x1x2)与f(x1)f(x2)异号,即f(x)为减函数故正确;表示(x1x2)与f(x1)f(x2)同号,即f(x)为增函数故不正确,左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故不正确,正确,综上,正确的结论为故选D6 【答案】【解析】考点:直线方程7 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=08 【答案】 B【解析】解:不等式组表示的平面区域如图所示阴影部分,当直线ax+by=z(a0,b0)过直线xy+2=0与直线3xy6=0的交点(4,6)时,目标函数z=ax+by(a0,b0)取得最大12,即4a+6b=12,即2a+3b=6,而=()=+()=,当且仅当a=b=,取最小值故选B9 【答案】 A【解析】解:如图所示,连接AC、BD相交于点O,连接EM,EN在中:由异面直线的定义可知:EP与BD是异面直线,不可能EPBD,因此不正确;在中:由正四棱锥SABCD,可得SO底面ABCD,ACBD,SOACSOBD=O,AC平面SBD,E,M,N分别是BC,CD,SC的中点,EMBD,MNSD,而EMMN=M,平面EMN平面SBD,AC平面EMN,ACEP故正确在中:由同理可得:EM平面SAC,若EP平面SAC,则EPEM,与EPEM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直即不正确在中:由可知平面EMN平面SBD,EP平面SBD,因此正确故选:A【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养10【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为: a,所以,正方体的内切球与外接球的半径之比为:故选C11【答案】B【解析】解:直线l平面,l平面,又直线m平面,lm,故(1)正确;直线l平面,l平面,或l平面,又直线m平面,l与m可能平行也可能相交,还可以异面,故(2)错误;直线l平面,lm,m,直线m平面,故(3)正确;直线l平面,lm,m或m,又直线m平面,则与可能平行也可能相交,故(4)错误;故选B【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键12【答案】C【解析】考点:平面图形的直观图.二、填空题13【答案】x=3 【解析】解:经过A(3,1),且平行于y轴的直线方程为:x=3故答案为:x=314【答案】【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,恒成立,由1考点:导数的几何意义;不等式恒成立问题【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点 (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件15【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。故答案为:16【答案】6 【解析】解:若与共线,则2y3(4)=0解得y=6故答案为:6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键17【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题18【答案】【解析】由,两式相减,得,所以,于是由不等式对一切恒成立,得,解得三、解答题19【答案】【解析】(1)由题意,得,因为,解得4分()由题意,令竞标团队获得奖励金额为随机变量,则的值可以为0,2,4,6,8,10,125分而; ; ;9分所以的分布列为:024681012于是,12分20【答案】 【解析】(本题满分12分)解:(1)由表格给出的信息知,函数f(x)的周期为T=2(0)=所以=2,由sin(20+)=1,且02,所以=所以函数的解析式为f(x)=sin(2x+)=cos2x6分(2)g(x)=f(x)+sin2x=sin2x+cos2x=2sin(2x+),令2k2x+2k,kZ则得kxk+,kZ故函数g(x)=f(x)+sin2x的单调递增区间是:,kZ12分【点评】本题主要考查了由y=Asin(x+)的部分图象确定其解析式,正弦函数的单调性,周期公式的应用,属于基本知识的考查21【答案】 【解析】解:(1)由题意可知第3组的频率为0.065=0.3,第4组的频率为0.045=0.2,第5组的频率为0.025=0.1;(2)第3组的人数为0.3100=30,第4组的人数为0.2100=20,第5组的人数为0.1100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力22【答案】 【解析】解:(1)函数f(x)=x2(a+b)x+3a,当不等式f(x)0的解集为1,3时,方程x2(a+b)x+3a=0的两根为1和3,由根与系数的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 凉山自治州中储粮2025秋招信息技术岗高频笔试题库含答案
- 中国移动达州市2025秋招笔试行测题库及答案供应链采购类
- 安徽地区中石油2025秋招笔试模拟题含答案油品分析质检岗
- 牡丹江市中石油2025秋招面试半结构化模拟题及答案机械与动力工程岗
- 中国移动包头市2025秋招笔试性格测评专练及答案
- 商丘市中石油2025秋招笔试模拟题含答案炼油设备技术岗
- 珠海市中石油2025秋招笔试行测50题速记
- 三明市中石油2025秋招笔试提升练习题含答案
- 国家能源吉林市2025秋招机械工程类面试追问及参考回答
- 张掖市中石油2025秋招笔试模拟题含答案安全环保与HSE岗
- 成人重症患者颅内压增高防控护理专家共识(2024版)解读课件
- 山体滑坡事故应急处理模版课件
- 体检中心投诉处理流程
- 基于学科核心素养下的教学设计
- 人教版英语七年级(全册)单词表
- 全心衰竭的治疗与护理
- 扩张型心肌病治疗及护理
- 2002版干部履历表(贵州省)
- DL∕T 1396-2014 水电建设项目文件收集与档案整 理规范
- 行路难课件8省公开课一等奖新名师比赛一等奖课件
- 防欺凌隐患排查和矛盾化解记录表
评论
0/150
提交评论