




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8讲 函数与方程,考试要求 函数的零点与方程根的关系,一元二次方程根的存在性及根的个数的判断,B级要求,知 识 梳 理 1函数的零点 (1)函数零点的定义 对于函数yf(x)(xD),把使 的实数x叫作函数yf(x)(xD)的零点 (2)几个等价关系 方程f(x)0有实数根函数yf(x)的图象与 有交点函数yf(x)有 ,f(x)0,x轴,零点,(3)零点存在性定理 如果函数yf(x)满足:在区间a,b上的图象是连续不断的一条曲线; ;则函数yf(x)在(a,b)上存在零点,即存在c(a,b),使得f(c)0,这个c也就是方程f(x)0的根,f(a)f(b)0,2二次函数yax2bxc(a0)的图像与零点的关系,(x1,0),(x2,0),(x1,0),诊 断 自 测 1判断正误(在括号内打“”或“”) (1)函数的零点就是函数的图象与x轴的交点 ( ) (2)函数yf(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)f(b)0. ( ) (3)二次函数yax2bxc(a0)在b24ac0时,函数y2x与yx2的图象有两个交点 ( ),解析 (1)函数的零点是函数的图象与x轴交点的横坐标,故(1)错;(2)函数f(x)x2在区间(1,1)内有零点,且函数图象连续,但f(1)f(1)0. 答案 (1) (2) (3) (4),3(2015安徽卷改编)在函数ycos x;ysin x;yln x;yx21中,既是偶函数又存在零点的是_(填序号) 解析 由于ysin x是奇函数;yln x是非奇非偶函数;yx21是偶函数但没有零点;只有ycos x是偶函数又有零点 答案 ,答案 3,答案 (1)1 (2)4,规律方法 函数零点个数的判断方法:(1)直接求零点,令f(x)0,有几个解就有几个零点 (2)零点存在性定理,要求函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,再结合函数的图象与性质确定函数零点个数 (3)利用图象交点个数,作出两函数图象,观察其交点个数即得零点个数,规律方法 已知函数有零点(方程有根)求参数值常用的方法和思路:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,考点三 二次函数的零点问题 【例3】 已知函数f(x)x2ax2,aR. (1)若不等式f(x)0的解集为1,2,求不等式f(x)1x2的解集; (2)若函数g(x)f(x)x21在区间(1,2)上有两个不同的零点,求实数a的取值范围,规律方法 解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组,【训练3】 已知f(x)x2(a21)x(a2)的一个零点比1大,一个零点比1小,求实数a的取值范围 解 法一 设方程x2(a21)x(a2)0的两根分别为x1,x2(x1x2), 则(x11)(x21)0, x1x2(x1x2)10, 由根与系数的关系, 得(a2)(a21)10, 即a2a20, 2a1.,法二 函数图象大致如图,则有f(1)0,即1(a21)a20,得a2a20, 2a1. 故实数a的取值范围是(2,1).,思想方法 1判定函数零点的常用方法有: (1)零点存在性定理;(2)数形结合;(3)解方程f(x)0. 2研究方程f(x)g(x)的解,实质就是研究G(x)f(x)g(x)的零点 3转化思想:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题,易错防范 1函数f(x)的零点是一个实数,是方程f(x)0的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 持续改进管理项目执行计划书
- 制造工厂设备故障维修记录表
- 高二数学第一次月考卷01【测试范围:人教A版2019选择性必修第一册第一章~第二章】(考试版A3)
- 提升高中生物学科兴趣的教学策略
- 公司年度销售目标设置与分析
- ERP系统岗位职责需求说明
- 基于大数据的快递发货路径优化模型
- 七年级生物下册课件及教案资料
- 电商客服职位年度绩效考核标准
- 一次集体活动的难忘瞬间叙述文12篇
- HDX8000系列安装配置操作指南
- 白虎汤分析课件
- 山东青年政治学院校徽校标
- 教学课件:《新能源材料技术》朱继平
- 专业技术职称与职业(工种)技能人才评价对应表(试行)
- EDA课程第3~5章QuartusII Verilog HDL 数字电路设计实现
- DB37∕T 4328-2021 建筑消防设施维护保养技术规程
- 钢结构加工制造方案(60页)
- (高清正版)JJF(浙)1102-2014生物人工气候箱校准规范
- 完整解读新版《义务教育课程方案》2022年《义务教育课程方案(2022版)》PPT课件
- 学生体质健康调查表
评论
0/150
提交评论