蒙城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
蒙城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
蒙城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
蒙城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
蒙城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷蒙城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数f(x)是以2为周期的偶函数,且当x(0,1)时,f(x)=x+1,则函数f(x)在(1,2)上的解析式为( )Af(x)=3xBf(x)=x3Cf(x)=1xDf(x)=x+12 直线l平面,直线m平面,命题p:“若直线m,则ml”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D33 已知实数a,b,c满足不等式0abc1,且M=2a,N=5b,P=()c,则M、N、P的大小关系为( )AMNPBPMNCNPM4 已知i是虚数单位,则复数等于( )A +iB +iCiDi5 设集合( )ABCD 6 已知两点M(1,),N(4,),给出下列曲线方程:4x+2y1=0; x2+y2=3; +y2=1; y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是( )ABCD7 已知向量=(2,3,5)与向量=(3,)平行,则=( )ABCD8 设a,bR且a+b=3,b0,则当+取得最小值时,实数a的值是( )ABC或D39 双曲线的焦点与椭圆的焦点重合,则m的值等于( )A12B20CD10下列各组函数中,表示同一函数的是( )A、x与 B、 与 C、与 D、与11已知函数f(x)=x26x+7,x(2,5的值域是( )A(1,2B(2,2C2,2D2,1)12函数f(x)=,则f(1)的值为( )A1B2C3D4二、填空题13已知x,y满足条件,则函数z=2x+y的最大值是14方程(x+y1)=0所表示的曲线是15已知命题p:实数m满足m2+12a27am(a0),命题q:实数m满足方程+=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,a的取值范围为16已知f(x)x(exaex)为偶函数,则a_17函数()满足且在上的导数满足,则不等式的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.18设集合A=3,0,1,B=t2t+1若AB=A,则t=三、解答题19已知p:x2+2xm0对xR恒成立;q:x2+mx+1=0有两个正根若pq为假命题,pq为真命题,求m的取值范围20(本题满分12分)设向量,记函数.(1)求函数的单调递增区间;(2)在锐角中,角的对边分别为.若,求面积的最大值.21已知函数f(x)=lg(x25x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合AB,AB 22设函数f(x)=lnx+a(1x)()讨论:f(x)的单调性;()当f(x)有最大值,且最大值大于2a2时,求a的取值范围23设F是抛物线G:x2=4y的焦点(1)过点P(0,4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FAFB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值24已知函数f(x)=x3+ax+2()求证:曲线=f(x)在点(1,f(1)处的切线在y轴上的截距为定值;()若x0时,不等式xex+mf(x)am2x恒成立,求实数m的取值范围 蒙城县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:x(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,x(1,2),(x2)(1,0),f(x)=f(x2)=f(2x)=2x+1=3x,故选A2 【答案】B【解析】解:直线l平面,直线m平面,命题p:“若直线m,则ml”,命题P是真命题,命题P的逆否命题是真命题;P:“若直线m不垂直于,则m不垂直于l”,P是假命题,命题p的逆命题和否命题都是假命题故选:B3 【答案】A【解析】解:0abc1,12a2,5b1,()c1,5b=()b()c()c,即MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键4 【答案】A【解析】解:复数=,故选:A【点评】本题考查了复数的运算法则,属于基础题5 【答案】B【解析】解:集合A中的不等式,当x0时,解得:x;当x0时,解得:x,集合B中的解集为x,则AB=(,+)故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键6 【答案】 D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交MN的中点坐标为(,0),MN斜率为=MN的垂直平分线为y=2(x+),4x+2y1=0与y=2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知不符合题意x2+y2=3与y=2(x+),联立,消去y得5x212x+6=0,=1444560,可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得9x224x16=0,0可知中的曲线与MN的垂直平分线有交点,中的方程与y=2(x+),联立,消去y得7x224x+20=0,0可知中的曲线与MN的垂直平分线有交点,故选D7 【答案】C【解析】解:向量=(2,3,5)与向量=(3,)平行,=,=故选:C【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案8 【答案】C【解析】解:a+b=3,b0,b=3a0,a3,且a0当0a3时, +=+=f(a),f(a)=+=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值当a0时, +=()=(+)=f(a),f(a)=,当时,f(a)0,此时函数f(a)单调递增;当时,f(a)0,此时函数f(a)单调递减当a=时, +取得最小值综上可得:当a=或时, +取得最小值故选:C【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题9 【答案】A【解析】解:椭圆的焦点为(4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12故选:A10【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:定义域相同,对应法则相同。选项A中两个函数定义域不同,选项B中两个函数对应法则不同,选项D中两个函数定义域不同。故选C。考点:同一函数的判定。11【答案】C【解析】解:由f(x)=x26x+7=(x3)22,x(2,5当x=3时,f(x)min=2当x=5时,函数f(x)=x26x+7,x(2,5的值域是2,2故选:C12【答案】A【解析】解:由题意可得f(1)=f(1+3)=f(2)=log22=1故选:A【点评】本题考查分度函数求值,涉及对数的运算,属基础题二、填空题13【答案】4 【解析】解:由约束条件作出可行域如图,化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=2(2)+0=4故答案为:4【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题14【答案】两条射线和一个圆 【解析】解:由题意可得x2+y240,表示的区域是以原点为圆心的圆的外部以及圆上的部分由方程(x+y1)=0,可得x+y1=0,或 x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆【点评】本题主要考查直线和圆的方程的特征,属于基础题15【答案】, 【解析】解:由m27am+12a20(a0),则3am4a即命题p:3am4a,实数m满足方程+=1表示的焦点在y轴上的椭圆,则,解得1m2,若p是q的充分不必要条件,则,解得,故答案为,【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q的等价条件是解决本题的关键16【答案】【解析】解析:f(x)是偶函数,f(x)f(x)恒成立,即(x)(exaex)x(exaex),a(exex)(exex),a1.答案:117【答案】【解析】构造函数,则,说明在上是增函数,且.又不等式可化为,即,解得.不等式的解集为.18【答案】0或1 【解析】解:由AB=A知BA,t2t+1=3t2t+4=0,无解 或t2t+1=0,无解 或t2t+1=1,t2t=0,解得 t=0或t=1故答案为0或1【点评】本题考查集合运算及基本关系,掌握好概念是基础正确的转化和计算是关键三、解答题19【答案】 【解析】解:若p为真,则=44m0,即m1 若q为真,则,即m2 pq为假命题,pq为真命题,则p,q一真一假若p真q假,则,解得:m1 若p假q真,则,解得:m2 综上所述:m2,或m1 20【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.21【答案】【解析】解:(1)由x25x+60,即(x2)(x3)0,解得:x3或x2,即A=x|x3或x2,由g(x)=,得到10,当x0时,整理得:4x0,即x4;当x0时,整理得:4x0,无解,综上,不等式的解集为0x4,即B=x|0x4;(2)A=x|x3或x2,B=x|0x4,AB=R,AB=x|0x2或3x4【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键22【答案】 【解析】解:()f(x)=lnx+a(1x)的定义域为(0,+),f(x)=a=,若a0,则f(x)0,函数f(x)在(0,+)上单调递增,若a0,则当x(0,)时,f(x)0,当x(,+)时,f(x)0,所以f(x)在(0,)上单调递增,在(,+)上单调递减,(),由()知,当a0时,f(x)在(0,+)上无最大值;当a0时,f(x)在x=取得最大值,最大值为f()=lna+a1,f()2a2,lna+a10,令g(a)=lna+a1,g(a)在(0,+)单调递增,g(1)=0,当0a1时,g(a)0,当a1时,g(a)0,a的取值范围为(0,1)【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题23【答案】 【解析】解:(1)设切点由,知抛物线在Q点处的切线斜率为,故所求切线方程为即y=x0xx02因为点P(0,4)在切线上所以,解得x0=4所求切线方程为y=2x4(2)设A(x1,y1),C(x2,y2)由题意知,直线AC的斜率k存在,由对称性,不妨设k0因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1点A,C的坐标满足方程组,得x24kx4=0,由根与系数的关系知,|AC|=4(1+k2),因为ACBD,所以BD的斜率为,从而BD的方程为y=x+1同理可求得|BD|=4(1+),SABCD=|AC|BD|=8(2+k2+)32当k=1时,等号成立所以,四边形ABCD面积的最小值为32【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题24【答案】 【解析】()证明:f(x)的导数f(x)=x2+a,即有f(1)=a+,f(1)=1+a,则切线方程为y(a+)=(1+a)(x1),令x=0,得y=为定值; ()解:由xex+mf(x)am2x对x0时恒成立,得xex+mx2m2x0对x0时恒成立,即ex+mxm20对x0时恒成立,则(ex+mxm2)min0,记g(x)=ex+mxm2,g(x)=ex+m,由x0,ex1,若m1,g(x)0,g(x)在0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论