夹江县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
夹江县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
夹江县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
夹江县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
夹江县民族中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷夹江县民族中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 给出函数,如下表,则的值域为( ) A B C D以上情况都有可能2 双曲线E与椭圆C:1有相同焦点,且以E的一个焦点为圆心与双曲线的渐近线相切的圆的面积为,则E的方程为( )A.1 B.1C.y21 D.13 已知函数f(x)=x4cosx+mx2+x(mR),若导函数f(x)在区间2,2上有最大值10,则导函数f(x)在区间2,2上的最小值为( )A12B10C8D64 直径为6的球的表面积和体积分别是( )A B C D5 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士不同的分配方法共有( )A90种B180种C270种D540种6 设f(x)=ex+x4,则函数f(x)的零点所在区间为( )A(1,0)B(0,1)C(1,2)D(2,3)7 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A B C D8 已知向量,(),且,点在圆上,则( )A B C D9 已知变量x与y负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是( )A =0.2x+3.3B =0.4x+1.5C =2x3.2D =2x+8.610i是虚数单位,i2015等于( )A1B1CiDi11已知平面=l,m是内不同于l的直线,那么下列命题中错误 的是()A若m,则mlB若ml,则mC若m,则mlD若ml,则m12若函数的定义域是,则函数的定义域是( )A B C D二、填空题13某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为14已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为2,则直线的方程为_.15若a,b是函数f(x)=x2px+q(p0,q0)的两个不同的零点,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于16在正方体ABCDA1B1C1D1中,异面直线A1B与AC所成的角是17【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为_.18等比数列an的公比q=,a6=1,则S6=三、解答题19如图,在四边形ABCD中,DAB=90,ADC=135,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积20过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,求抛物线的方程21如图,菱形ABCD的边长为2,现将ACD沿对角线AC折起至ACP位置,并使平面PAC平面ABC ()求证:ACPB;()在菱形ABCD中,若ABC=60,求直线AB与平面PBC所成角的正弦值;()求四面体PABC体积的最大值22甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望23如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,()求C1、C2的方程;()记MAB,MDE的面积分别为S1、S2,若,求直线AB的方程24定义在R上的增函数y=f(x)对任意x,yR都有f(x+y)=f(x)+f(y),则(1)求f(0); (2)证明:f(x)为奇函数;(3)若f(k3x)+f(3x9x2)0对任意xR恒成立,求实数k的取值范围 夹江县民族中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】试题分析:故值域为.考点:复合函数求值2 【答案】【解析】选C.可设双曲线E的方程为1,渐近线方程为yx,即bxay0,由题意得E的一个焦点坐标为(,0),圆的半径为1,焦点到渐近线的距离为1.即1,又a2b26,b1,a,E的方程为y21,故选C.3 【答案】C【解析】解:由已知得f(x)=4x3cosxx4sinx+2mx+1,令g(x)=4x3cosxx4sinx+2mx是奇函数,由f(x)的最大值为10知:g(x)的最大值为9,最小值为9,从而f(x)的最小值为9+1=8故选C【点评】本题考查了导数的计算、奇函数的最值的性质属于常规题,难度不大4 【答案】D【解析】考点:球的表面积和体积5 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种故选D6 【答案】C【解析】解:f(x)=ex+x4,f(1)=e1140,f(0)=e0+040,f(1)=e1+140,f(2)=e2+240,f(3)=e3+340,f(1)f(2)0,由零点判定定理可知,函数的零点在(1,2)故选:C7 【答案】【解析】试题分析:,故选B.考点:1.三视图;2.几何体的体积.8 【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.9 【答案】A【解析】解:变量x与y负相关,排除选项B,C;回归直线方程经过样本中心,把=3, =2.7,代入A成立,代入D不成立故选:A10【答案】D【解析】解:i2015=i5034+3=i3=i,故选:D【点评】本题主要考查复数的基本运算,比较基础11【答案】D【解析】【分析】由题设条件,平面=l,m是内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D12【答案】B 【解析】二、填空题13【答案】12 【解析】解:设两者都喜欢的人数为x人,则只喜爱篮球的有(15x)人,只喜爱乒乓球的有(10x)人,由此可得(15x)+(10x)+x+8=30,解得x=3,所以15x=12,即所求人数为12人,故答案为:1214【答案】【解析】解析: 设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即.15【答案】9 【解析】解:由题意可得:a+b=p,ab=q,p0,q0,可得a0,b0,又a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得或解得:;解得:p=a+b=5,q=14=4,则p+q=9故答案为:916【答案】60 【解析】解:连结BC1、A1C1,在正方体ABCDA1B1C1D1中,A1A平行且等于C1C,四边形AA1C1C为平行四边形,可得A1C1AC,因此BA1C1(或其补角)是异面直线A1B与AC所成的角,设正方体的棱长为a,则A1B1C中A1B=BC1=C1A1=a,A1B1C是等边三角形,可得BA1C1=60,即异面直线A1B与AC所成的角等于60故答案为:60【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题17【答案】【解析】18【答案】21 【解析】解:等比数列an的公比q=,a6=1,a1()5=1,解得a1=32,S6=21故答案为:21三、解答题19【答案】 【解析】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=r22+(r1+r2)l2+r1l1=20【答案】 【解析】解:由题意可知过焦点的直线方程为y=x,联立,得,设A(x1,y1),B(x2,y2)根据抛物线的定义,得|AB|=x1+x2+p=4p=8,解得p=2抛物线的方程为y2=4x【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p的值着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题21【答案】 【解析】解:()证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,PA=PC,BA=BC,POAC,BOAC,又POBO=O,AC平面POB,又PB平面POB,ACPB()平面PAC平面ABC,平面PAC平面ABC=AC,PO平面PAC,POAC,PO面ABC,OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,ABC=60,菱形ABCD的边长为2,设平面PBC的法向量,直线AB与平面PBC成角为,取x=1,则,于是,直线AB与平面PBC成角的正弦值为()法一:设ABC=APC=,(0,),又PO平面ABC, =(),当且仅当,即时取等号,四面体PABC体积的最大值为法二:设ABC=APC=,(0,),又PO平面ABC,=(),设,则,且0t1,当时,VPABC0,当时,VPABC0,当时,VPABC取得最大值,四面体PABC体积的最大值为法三:设PO=x,则BO=x,(0x2)又PO平面ABC,当且仅当x2=82x2,即时取等号,四面体PABC体积的最大值为【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养22【答案】 【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=P(X=0)=(1)(1)=;P(X=1)=;P(X=2)=X的分布列为:X 0 1 2PEX=0+1+2=【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型解题时要认真审题,仔细解答,注意概率知识的灵活运用23【答案】 【解析】解:()椭圆C1:的离心率为,a2=2b2,令x2b=0可得x=,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长,2=2b,b=1,C1、C2的方程分别为,y=x21; ()设直线MA的斜率为k1,直线MA的方程为y=k1x1与y=x21联立得x2k1x=0x=0或x=k1,A(k1,k121)同理可得B(k2,k221)S1=|MA|MB|=|k1|k2|y=k1x1与椭圆方程联立,可得D(),同理可得E() S2=|MD|ME|= 若则解得或直线AB的方程为或【点评】本题考查椭圆的标准方程,考查直线与抛物线、椭圆的位置关系,考查三角形面积的计算,联立方程,确定点的坐标是关键24【答案】 【解析】解:(1)在f(x+y)=f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论