




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题17 圆锥曲线中的热点问题1已知椭圆C1:1与双曲线C2:1有相同的焦点,则椭圆C1的离心率e的取值范围为()A.B.C(0,1) D.解析:由题意知m0,n0)相交于A,B两点,若点N是点C关于坐标原点的对称点,则ANB面积的最小值为()A2p B.pC2p2 D.p24若以F1(3,0),F2(3,0)为焦点的双曲线与直线yx1有公共点,则该双曲线的离心率的最小值为()A. B.C. D.解析:依题意,设题中的双曲线方程是1(a0,b0),则有a2b29,b29a2.由消去y,得1,即(b2a2)x22a2xa2(1b2)0(*)有实数解,注意到当b2a20时,方程(*)有实数解,此时双曲线的离心率e;当b2a20时,4a44a2(b2a2)(1b2)0,即a2b21,a2(9a2)1(b29a20且a2b2),由此解得00,b0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围是()A(1,) B(1,2)C(2,1) D(1,1)解析:若ABE是锐角三角形,只需AEF45,在RtAFE中,|AF|,|FE|ac,则acb20e2e201e1,则1e0,b0)的左、右焦点分别为F1,F2,P是双曲线上一点且|PF1|2|PF2|,则此双曲线离心率的取值范围是_解析:由双曲线定义有|PF1|PF2|2a,而由题意|PF1|2|PF2|,故|PF2|2a,|PF1|4a.又|F1F2|2c,由三角不等式有6a2c.又由定义有ca,故离心率e(1,3答案:(1,38已知P为抛物线y24x上一个动点,Q为圆x2(y4)21上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是_9设抛物线y26x的焦点为F,已知A,B为抛物线上的两个动点,且满足AFB60,过弦AB的中点M作抛物线准线的垂线为MN,垂足为N,则的最大值为_解析:过A,B分别向准线作垂线,垂足分别为A1,B1,设|AF|a,|BF|b,如图,根据递形中位线性质知|MN|.在AFB中,由余弦定理得|AB|2a2b22abcos 60a2b2ab(ab)23ab(ab)232.所以|AB|,1.答案:110已知椭圆C:1(ab0)的离心率为,且椭圆C上的点到一个焦点的距离的最小值为.(1)求椭圆C的方程;(2)已知过点T(0,2)的直线l与椭圆C交于A、B两点,若在x轴上存在一点E,使AEB90,求直线l的斜率k的取值范围解析:(1)设椭圆的半焦距长为c,则由题设有:,解得:a,c,b21,故椭圆C的方程为x21.(2)由已知可得,以AB为直径的圆与x轴有公共点设A(x1,y1),B(x2,y2),AB中点为M(x0,y0),将直线l:ykx2代入x21,得(3k2)x24kx10,12k212,x0,y0kx02,|AB|,解得:k413,即k或k.11已知椭圆C1:1(ab0)的离心率为,F1、F2分别为椭圆的左、右焦点,D、E分别是椭圆的上顶点与右顶点,且SDEF21.(1)求椭圆C1的方程;(2)在椭圆C1落在第一象限的图象上任取一点作C1的切线l,求l与坐标轴围成的三角形的面积的最小值 (2)直线l与椭圆C1相切于第一象限内的一点,直线l的斜率必存在且为负设直线l的方程为:ykxm(k0),联立,消去y整理可得:x22kmxm210,根据题意可得方程只有一实根,(2km)24(m21)0,整理得:m24k21.直线l与两坐标轴的交点分别为,(0,m)且kb0)椭圆的一个顶点恰好在抛物线x28y的准线y2上,b2,解得b2.又,a2b2c2,a4,c2.可得椭圆C的标准方程为1.(2)设A(x1,y1),B(x2,y2),APQBPQ,则PA,PB的斜率互为相反数,可设直线PA的斜率为k,则PB的斜率为k,直线PA的方程为:yk(x2),联立,化为(14k2)x28k(2k)x4(2k)2160,x12.同理可得:x22,x1x2,x1x2,kAB.直线AB的斜率为定值.13已知椭圆E:1的右焦点为F(c,0)且abc0,设短轴的一个端点为D,原点O到直线DF的距离为,过原点和x轴不重合的直线与椭圆E相交于C,G两点,且|4.(1)求椭圆E的方程;(2)是否存在过点P(2,1)的直线l与椭圆E相交于不同的两点A,B且使得24成立?若存在,试求出直线l的方程;若不存在,请说明理由解析:(1)由椭圆的对称性知|2a4,a2.又原点O到直线DF的距离为,bc,又a2b2c24,abc0,b,c1.故椭圆E的方程为1.(2)当直线l与x轴垂直时不满足条件故可设A(x1,y1),B(x2,y2),直线l的方程为yk(x2)1,代入椭圆方程得(34k2)x28k(2k1)x16k216k80,x1x2,x1x2,32(6k3)0,k.24,即4(x12)(x22)(y11)(y21)5,4(x12)(x22)(1k2)5,即4x1x22(x1x2)4(1k2)5,4(1k2)45,解得k,k不符合题意,舍去存在满足条件的直线l,其方程为yx.14.如图,过顶点在原点、对称轴为y轴的抛物线E上的定点A(2,1)作斜率分别为k1、k2的直线,分别交抛物线E于B、C两点 (1)求抛物线E的标准方程和准线方程;(2)若k1k2k1k2,证明:直线BC恒过定点解析:(1)设抛物线E的标准方程为x2ay,a0,将A(2,1)代入得,a4.所以抛物线E的标准方程为x24y,准线方程为y1.15.已知抛物线y22px(p0)上点T(3,t)到焦点F的距离为4. (1)求t,p的值;(2)设A,B是抛物线上分别位于x轴两侧的两个动点,且5(其中O为坐标原点)求证:直线AB必过定点,并求出该定点P的坐标;过点P作AB的垂线与抛物线交于C,D两点,求四边形ACBD面积的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南省社会科学院湖南省人民政府发展研究中心招聘高层次人才14人模拟试卷(含答案详解)
- 2025福建漳州市诏安县人民武装部哨兵招聘1人模拟试卷参考答案详解
- 2025年城东区面向社会公开招聘公共服务岗位聘用人员模拟试卷及答案详解(名师系列)
- 2025安徽六安市中医院招聘13人模拟试卷及答案详解(考点梳理)
- 2025安徽宿州市立医院招聘编外人员42人考前自测高频考点模拟试题及答案详解(全优)
- 2025福建漳州市长泰区中医院社会招聘护理人员2人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025广西百色市平果市民政局公益性岗位人员招聘1人考前自测高频考点模拟试题含答案详解
- 2025贵州从江县中医医院招聘模拟试卷及答案详解(有一套)
- 2025届春季东华公司社会招聘模拟试卷及答案详解(有一套)
- 2025贵州铜仁市万山区事业单位引进高层次及急需紧缺人才12人考前自测高频考点模拟试题附答案详解(模拟题)
- 赠送公司股权协议书范本
- 医院清洗服务方案-清洗项目实施方案设计完整流程
- 心理健康考试题及答案
- 钻探工(高级)职业技能考试题(附答案)
- 锂电池、新能源汽车火灾事故灭火救援处置
- 《公路技术状况评定》课件-任务六:公路技术状况指数MQI
- 油气输送管道穿越工程施工规范
- 酒店客房入住数据分析表格
- 中级财务会计知到课后答案智慧树章节测试答案2025年春云南财经大学
- 2025青海省建筑安全员B证考试题库及答案
- 新版机动车交通事故责任强制保险合同
评论
0/150
提交评论