




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷咸丰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在等差数列an中,a3=5,a4+a8=22,则的前20项和为( )ABCD2 函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点3 函数y=2|x|的图象是( )ABCD4 设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD5 三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是( )A6,2B6,0)( 0,2C2,0)( 0,6D(0,26 执行如图所示的程序框图,输出的结果是()A15 B21 C24 D357 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )ABCD8 已知点F1,F2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A(0,)B(0,C(,D,1)9 已知向量,若为实数,则( )A B C1 D210若集合M=y|y=2x,x1,N=x|0,则 NM( )A(11,B(0,1C1,1D(1,211已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D12四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A96B48C24D0二、填空题13已知数列的前项和是, 则数列的通项_14已知z是复数,且|z|=1,则|z3+4i|的最大值为15已知函数的三个零点成等比数列,则 .161785与840的最大约数为17数列 an中,a12,an1anc(c为常数),an的前10项和为S10200,则c_18已知随机变量N(2,2),若P(4)=0.4,则P(0)=三、解答题19已知A、B、C为ABC的三个内角,他们的对边分别为a、b、c,且(1)求A;(2)若,求bc的值,并求ABC的面积 20(本小题满分12分)如图长方体ABCDA1B1C1D1中,AB16,BC10,AA18,点E,F分别在A1B1,D1C1上,A1E4,D1F8,过点E,F,C的平面与长方体的面相交,交线围成一个四边形(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面将长方体分成的两部分体积之比21已知函数f(x)=|2x+1|+|2x3|()求不等式f(x)6的解集;()若关于x的不等式f(x)log2(a23a)2恒成立,求实数a的取值范围 22如图,边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点()证明:AMPM; ()求点D到平面AMP的距离23如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y26x91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线24已知椭圆C: +=1(ab0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切()求椭圆C的方程;()如图,若斜率为k(k0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线l过定点,并求出斜率k的取值范围咸丰县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:在等差数列an中,由a4+a8=22,得2a6=22,a6=11又a3=5,得d=,a1=a32d=54=1的前20项和为:=故选:B2 【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值3 【答案】B【解析】解:f(x)=2|x|=2|x|=f(x)y=2|x|是偶函数,又函数y=2|x|在0,+)上单调递增,故C错误且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键4 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C5 【答案】B【解析】解:设此等比数列的公比为q,a+b+c=6,=6,b=当q0时, =2,当且仅当q=1时取等号,此时b(0,2;当q0时,b=6,当且仅当q=1时取等号,此时b6,0)b的取值范围是6,0)( 0,2故选:B【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题6 【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24故答案为:C7 【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B8 【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故|=,|=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+2cosF1PF2,由cosF1PF2(1,1)可得4c2=cosF1PF2(,),即4c2,1,即e21,e1;当P与两焦点F1,F2共线时,可得a+c=2(ac),解得e=;综上可得此椭圆的离心率的取值范围为,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题9 【答案】B 【解析】试题分析:因为,所以,又因为,所以,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.10【答案】B【解析】解:由M中y=2x,x1,得到0y2,即M=(0,2,由N中不等式变形得:(x1)(x+1)0,且x+10,解得:1x1,即N=(1,1,则MN=(0,1,故选:B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键11【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.12【答案】 B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系【专题】计算题;压轴题【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,求安全存放的不同方法的种数首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况然后求出即可得到答案【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48故选B【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖二、填空题13【答案】【解析】当时,当时,两式相减得:令得,所以答案: 14【答案】6 【解析】解:|z|=1,|z3+4i|=|z(34i)|z|+|34i|=1+=1+5=6,|z3+4i|的最大值为6,故答案为:6【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题15【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题16【答案】105 【解析】解:1785=8402+105,840=1058+0840与1785的最大公约数是105故答案为10517【答案】【解析】解析:由a12,an1anc,知数列an是以2为首项,公差为c的等差数列,由S10200得102c200,c4.答案:418【答案】0.6 【解析】解:随机变量服从正态分布N(2,2),曲线关于x=2对称,P(0)=P(4)=1P(4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题三、解答题19【答案】【解析】解:(1)A、B、C为ABC的三个内角,且cosBcosCsinBsinC=cos(B+C)=,B+C=,则A=;(2)a=2,b+c=4,cosA=,由余弦定理得:a2=b2+c22bccosA=b2+c2+bc=(b+c)2bc,即12=16bc,解得:bc=4,则SABC=bcsinA=4=【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键20【答案】【解析】解:(1)交线围成的四边形EFCG(如图所示)(2)平面A1B1C1D1平面ABCD,平面A1B1C1D1EF,平面ABCDGC,EFGC,同理EGFC.四边形EFCG为平行四边形,过E作EMD1F,垂足为M,EMBC10,A1E4,D1F8,MF4.GCEF,GB4(事实上RtEFMRtCGB)过C1作C1HFE交EB1于H,连接GH,则四边形EHC1F为平行四边形,由题意知,B1HEB1EH1284GB.平面将长方体分成的右边部分由三棱柱EHGFC1C与三棱柱HB1C1GBC两部分组成其体积为V2V三棱柱EHGFC1CV三棱柱HB1C1GBCSFC1CB1C1SGBCBB188104108480,平面将长方体分成的左边部分的体积V1V长方体V216108480800.,其体积比为(也可以)21【答案】 【解析】解:()原不等式等价于或或,解得:x2或x或1x,不等式f(x)6的解集为x|1x2 ()不等式f(x)2恒成立+2f(x)=|2x+1|+|2x3|恒成立+2f(x)min恒成立,|2x+1|+|2x3|(2x+1)(2x3)|=4,f(x)的最小值为4,+24,即,解得:1a0或3a4实数a的取值范围为(1,0)(3,4) 22【答案】 【解析】()证明:取CD的中点E,连接PE、EM、EAPCD为正三角形PECD,PE=PDsinPDE=2sin60=平面PCD平面ABCDPE平面ABCD四边形ABCD是矩形ADE、ECM、ABM均为直角三角形由勾股定理得EM=,AM=,AE=3EM2+AM2=AE2,AME=90AMPM()解:设D点到平面PAM的距离为d,连接DM,则VPADM=VDPAM而在RtPEM中,由勾股定理得PM=,即点D到平面PAM的距离为23【答案】 【解析】解:(方法一)设动圆圆心为M(x,y),半径为R,设已知圆的圆心分别为O1、O2,将圆的方程分别配方得:(x+3)2+y2=4,(x3)2+y2=100,当动圆与圆O1相外切时,有|O1M|=R+2当动圆与圆O2相内切时,有|O2M|=10R将两式相加,得|O1M|+|O2M|=12|O1O2|,动圆圆心M(x,y)到点O1(3,0)和O2(3,0)的距离和是常数12,所以点M的轨迹是焦点为点O1(3,0)、O2(3,0),长轴长等于12的椭圆2c=6,2a=12,c=3,a=6b2=369=27圆心轨迹方程为,轨迹为椭圆(方法二):由方法一可得方程,移项再两边分别平方得:2两边再平方得:3x2+4y210
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年【R1快开门式压力容器操作】考试题库及答案
- 2025年公路水运工程试验检测师公共基础试题库及答案(法规与技术标准)
- 2025年监理工程师之交通工程目标控制考试题库含答案a卷
- 桥梁招标课件
- 2025年品牌营销经理招聘面试模拟题与技巧解析
- 2026届安徽省亳州市第三十二中学高三化学第一学期期中联考模拟试题含解析
- 2025年电商运营岗位笔试模拟题及答案解析
- 2025护士资格证考试题库及答案
- 2025年大数据与人工智能课程考试试题及答案
- 2025年旅游管理与规划项目的考试试题及答案
- 2025年湖南省长沙市中考历史试卷(含解析)
- 公共邮箱使用管理办法
- 农贸市场可行性研究报告
- 2025东风汽车集团有限公司全球校园招聘笔试参考题库附带答案详解
- 演艺管理专业考试2025年试卷及答案
- 浙江首考2025年1月普通高等学校招生全国统一考试政治试卷(含答案)
- 2025至2030肥厚型心肌病(HCM)治疗学行业发展趋势分析与未来投资战略咨询研究报告
- 水利工程监理单位安全生产责任制
- 砂型铸造安全培训
- 2025暑期期末教师大会上校长在师德师风会讲话-:师德师风建设是我们一生的修行
- 油漆涂料安全培训
评论
0/150
提交评论