




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知ABC的周长为20,且顶点B (0,4),C (0,4),则顶点A的轨迹方程是( )A(x0) B(x0)C(x0) D(x0)2 已知f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,则f(x)g(x)0的解集为( )A(,a2)(a2,)B(,a2)(a2,)C(,a2)(a2,b)D(b,a2)(a2,)3 下列命题的说法错误的是( )A若复合命题pq为假命题,则p,q都是假命题B“x=1”是“x23x+2=0”的充分不必要条件C对于命题p:xR,x2+x+10 则p:xR,x2+x+10D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”4 若ab0,则下列不等式不成立是( )ABC|a|b|Da2b25 已知命题p:22,命题q:x0R,使得x02+2x0+2=0,则下列命题是真命题的是( )ApBpqCpqDpq6 在曲线y=x2上切线倾斜角为的点是( )A(0,0)B(2,4)C(,)D(,)7 设是两个不同的平面,是一条直线,以下命题正确的是( )A若,则 B若, ,则 C若,则 D若,则8 设全集U=1,3,5,7,9,集合A=1,|a5|,9,UA=5,7,则实数a的值是( )A2B8C2或8D2或89 曲线y=x33x2+1在点(1,1)处的切线方程为( )Ay=3x4By=3x+2Cy=4x+3Dy=4x510定义运算:例如,则函数的值域为( )A B C D11设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D12从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )ABCD二、填空题13抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为14空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点若AC=BD,则四边形EFGH是;若ACBD,则四边形EFGH是15如图是正方体的平面展开图,则在这个正方体中与平行;与是异面直线;与成角;与是异面直线以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题)16()0+(2)3 =17设函数f(x)是奇函数f(x)(xR)的导函数,f(1)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是18如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为三、解答题19在平面直角坐标系xOy中己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是=4(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求AOB的值 20(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程21如图,菱形ABCD的边长为2,现将ACD沿对角线AC折起至ACP位置,并使平面PAC平面ABC ()求证:ACPB;()在菱形ABCD中,若ABC=60,求直线AB与平面PBC所成角的正弦值;()求四面体PABC体积的最大值22已知函数,()求函数的最大值;()若,求函数的单调递增区间23已知数列an满足a1=3,an+1=an+p3n(nN*,p为常数),a1,a2+6,a3成等差数列(1)求p的值及数列an的通项公式;(2)设数列bn满足bn=,证明bn24已知函数f(x)=xlnx+ax(aR)()若a=2,求函数f(x)的单调区间;()若对任意x(1,+),f(x)k(x1)+axx恒成立,求正整数k的值(参考数据:ln2=0.6931,ln3=1.0986) 西区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:ABC的周长为20,顶点B (0,4),C (0,4),BC=8,AB+AC=208=12,128点A到两个定点的距离之和等于定值,点A的轨迹是椭圆,a=6,c=4b2=20,椭圆的方程是故选B【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点2 【答案】A【解析】解:f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,f(x)0的解集为(b,a2),g(x)0的解集为(,),则不等式f(x)g(x)0等价为或,即a2x或xa2,故不等式的解集为(,a2)(a2,),故选:A【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)0和g(x)0的解集是解决本题的关键3 【答案】A【解析】解:A复合命题pq为假命题,则p,q至少有一个命题为假命题,因此不正确;B由x23x+2=0,解得x=1,2,因此“x=1”是“x23x+2=0”的充分不必要条件,正确;C对于命题p:xR,x2+x+10 则p:xR,x2+x+10,正确;D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”,正确故选:A4 【答案】A【解析】解:ab0,ab0,|a|b|,a2b2,即,可知:B,C,D都正确,因此A不正确故选:A【点评】本题考查了不等式的基本性质,属于基础题5 【答案】D【解析】解:命题p:22是真命题,方程x2+2x+2=0无实根,故命题q:x0R,使得x02+2x0+2=0是假命题,故命题p,pq,pq是假命题,命题pq是真命题,故选:D6 【答案】D【解析】解:y=2x,设切点为(a,a2)y=2a,得切线的斜率为2a,所以2a=tan45=1,a=,在曲线y=x2上切线倾斜角为的点是(,)故选D【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题7 【答案】111【解析】考点:线线,线面,面面的位置关系8 【答案】D【解析】解:由题意可得3A,|a5|=3,a=2,或a=8,故选 D9 【答案】B【解析】解:点(1,1)在曲线上,y=3x26x,y|x=1=3,即切线斜率为3利用点斜式,切线方程为y+1=3(x1),即y=3x+2故选B【点评】考查导数的几何意义,该题比较容易10【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 11【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B12【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件二、填空题13【答案】8 【解析】解:抛物线y2=8x=2px,p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=x+=x+2=10,x=8,故答案为:8【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解14【答案】 菱形;矩形 【解析】解:如图所示:EFAC,GHAC且EF=AC,GH=AC四边形EFGH是平行四边形又AC=BDEF=FG四边形EFGH是菱形由知四边形EFGH是平行四边形又ACBD,EFFG四边形EFGH是矩形故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题15【答案】【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:与是异面直线,所以是错误的;与是平行直线,所以是错误的;从图中连接,由于几何体是正方体,所以三角形为等边三角形,所以所成的角为,所以是正确的;与是异面直线,所以是正确的考点:空间中直线与直线的位置关系16【答案】 【解析】解:()0+(2)3=1+(2)2=1+=故答案为:17【答案】(,1)(0,1) 【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)成立,即当x0时,g(x)恒小于0,当x0时,函数g(x)=为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数又g(1)=0,函数g(x)的大致图象如图所示:数形结合可得,不等式f(x)0xg(x)0或,0x1或x1f(x)0成立的x的取值范围是(,1)(0,1)故答案为:(,1)(0,1)18【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题三、解答题19【答案】 【解析】解:(1)直线l的参数方程为(t为参数),直线l的普通方程为曲线C的极坐标方程是=4,2=16,曲线C的直角坐标系方程为x2+y2=16(2)C的圆心C(0,0)到直线l: +y4=0的距离:d=2,cos,0, 20【答案】 【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为=1(0),由题意可得c2=4|+9|=13,解得=1即有双曲线的方程为=1或=121【答案】 【解析】解:()证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,PA=PC,BA=BC,POAC,BOAC,又POBO=O,AC平面POB,又PB平面POB,ACPB()平面PAC平面ABC,平面PAC平面ABC=AC,PO平面PAC,POAC,PO面ABC,OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,ABC=60,菱形ABCD的边长为2,设平面PBC的法向量,直线AB与平面PBC成角为,取x=1,则,于是,直线AB与平面PBC成角的正弦值为()法一:设ABC=APC=,(0,),又PO平面ABC, =(),当且仅当,即时取等号,四面体PABC体积的最大值为法二:设ABC=APC=,(0,),又PO平面ABC,=(),设,则,且0t1,当时,VPABC0,当时,VPABC0,当时,VPABC取得最大值,四面体PABC体积的最大值为法三:设PO=x,则BO=x,(0x2)又PO平面ABC,当且仅当x2=82x2,即时取等号,四面体PABC体积的最大值为【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养22【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】()由已知当,即, 时,()当时,递增即,令,且注意到函数的递增区间为23【答案】 【解析】(1)解:数列an满足a1=3,an+1=an+p3n(nN*,p为常数),a2=3+3p,a3=3+12p,a1,a2+6,a3成等差数列2a2+12=a1+a3,即18+6p=6+12p 解得p=2an+1=an+p3n,a2a1=23,a3a2=232,anan1=23n1,将这些式子全加起来 得ana1=3n3,an=3n(2)证明:bn满足bn=,bn=设f(x)=,则f(x)=,xN*,令f(x)=0,得x=(1,2)当x(0,)时,f(x)0;当x(,+)时,f(x)0,且f(1)=,f(2)=,f(x)max=f(2)=,xN*bn【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用24【答案】 【解析】解:(I)a=2时,f(x)=xlnx2x,则f(x)=lnx1令f(x)=0得x=e,当0xe时,f(x)0,当xe时,f(x)0,f(x)的单调递减区间是(0,e),单调递增区间为(e,+)(II)若对任意x(1,+),f(x)k(x1)+axx恒成立,则xlnx+axk(x1)+axx恒成立,即k(x1)xlnx+axax+x恒成立,又x10,则k对任意x(1,+)恒成立,设h(x)=,则h(x)=设m(x)=xlnx2,则m(x)=1,x(1,+),m(x)0,则m(x)在(1,+)上是增函数m(1)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 30856-2025LED外延芯片用砷化镓衬底
- GB/T 45905.3-2025电力现货市场运营第3部分:省间技术支持系统
- 森林防火知识培训讲话稿课件
- 鼻饲护理试题及答案
- 2025年IT企业面试笔试全真模拟题库
- 2025年注册验船师资格考试(A级船舶检验专业案例分析)复习题及答案二
- 2025年云计算开发工程师面试宝典与模拟题集
- 2025年汽车制造商招聘生产线工人模拟题及面试指南
- 2025年房地产行业营销策划岗位招聘笔试模拟题
- 2026届上海南洋模范化学高三上期末学业质量监测试题含解析
- 住院精神疾病患者自杀风险护理
- SH/T 0358-199510号航空液压油
- 劳动保障监察业务知识
- 新入辅导员职员工培训
- 保安公司安全生产培训课件
- 普通话声母资料
- 《测量降水量》教学课件
- 生态学基本原理解析课件
- 煤灰清理施工方案
- 《大学生军事理论教程》第三章
- 黄遵宪年谱长编(上下册):国家社科基金后期资助项目
评论
0/150
提交评论