汨罗市第三中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
汨罗市第三中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
汨罗市第三中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
汨罗市第三中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
汨罗市第三中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷汨罗市第三中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在的展开式中,含项的系数为( )(A) ( B ) (C) (D) 2 阅读如图所示的程序框图,运行相应的程序若该程序运行后输出的结果不大于20,则输入的整数i的最大值为( )A3B4C5D63 在平面直角坐标系中,向量(1,2),(2,m),若O,A,B三点能构成三角形,则()A B C D4 设Sn是等比数列an的前n项和,S4=5S2,则的值为( )A2或1B1或2C2或1D1或25 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=06 已知,那么夹角的余弦值( )ABC2D7 若椭圆+=1的离心率e=,则m的值为( )A1B或CD3或8 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A BC D【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力9 已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力10使得(3x2+)n(nN+)的展开式中含有常数项的最小的n=( )A3B5C6D1011设实数,则a、b、c的大小关系为( )AacbBcbaCbacDabc12下列函数在(0,+)上是增函数的是( )ABy=2x+5Cy=lnxDy=二、填空题13圆柱形玻璃杯高8cm,杯口周长为12cm,内壁距杯口2cm的点A处有一点蜜糖A点正对面的外壁(不是A点的外壁)距杯底2cm的点B处有一小虫若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少cm(不计杯壁厚度与小虫的尺寸)14过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为15在复平面内,复数与对应的点关于虚轴对称,且,则_16已知,那么 .17一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为_18空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点若AC=BD,则四边形EFGH是;若ACBD,则四边形EFGH是三、解答题19已知函数f(x)=2cos2x+2sinxcosx1,且f(x)的周期为2()当时,求f(x)的最值;()若,求的值20(本小题满分12分)已知直三棱柱中,上底面是斜边为的直角三角形,分别是的中点.(1)求证:平面; (2)求证:平面平面.21求下列函数的定义域,并用区间表示其结果(1)y=+;(2)y=22已知函数f(x)=|2x1|+|2x+a|,g(x)=x+3(1)当a=2时,求不等式f(x)g(x)的解集;(2)设a,且当x,a时,f(x)g(x),求a的取值范围 23已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+24已知双曲线过点P(3,4),它的渐近线方程为y=x(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1|PF2|=41,求F1PF2的余弦值汨罗市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C 【解析】因为,所以项只能在展开式中,即为,系数为故选C2 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件ni,s=2,n=1满足条件ni,s=5,n=2满足条件ni,s=10,n=3满足条件ni,s=19,n=4满足条件ni,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件ni,退出循环,输出s的值为19故选:B【点评】本题主要考查了循环结构的程序框图,属于基础题3 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。若O,A,B三点共线,有:-m=4,m=-4故要使O,A,B三点不共线,则。故答案为:B4 【答案】C【解析】解:由题设知a10,当q=1时,S4=4a110a1=5S2;q=1不成立当q1时,Sn=,由S4=5S2得1q4=5(1q2),(q24)(q21)=0,(q2)(q+2)(q1)(q+1)=0,解得q=1或q=2,或q=2=q,=1或=2故选:C【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键5 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=06 【答案】A【解析】解:,=,|=, =11+3(1)=4,cos=,故选:A【点评】本题考查了向量的夹角公式,属于基础题7 【答案】D【解析】解:当椭圆+=1的焦点在x轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y轴上时,a=,b=,c=由e=,得=,即m=故选D【点评】本题主要考查了椭圆的简单性质解题时要对椭圆的焦点在x轴和y轴进行分类讨论8 【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,且平面,如图所示,所以此四棱锥表面积为 ,故选C9 【答案】C【解析】当时,所以,故选C10【答案】B【解析】解:(3x2+)n(nN+)的展开式的通项公式为Tr+1=(3x2)nr2rx3r=x2n5r,令2n5r=0,则有n=,故展开式中含有常数项的最小的n为5,故选:B【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题11【答案】A【解析】解:,b=20.120=1,00.90=1acb故选:A12【答案】C【解析】解:对于A,函数y=在(,+)上是减函数,不满足题意;对于B,函数y=2x+5在(,+)上是减函数,不满足题意;对于C,函数y=lnx在(0,+)上是增函数,满足题意;对于D,函数y=在(0,+)上是减函数,不满足题意故选:C【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目二、填空题13【答案】10cm 【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A,则AA=4cm,BC=6cm,AC=8cm,AB=10cm故答案为:10【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决14【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题15【答案】-2【解析】【知识点】复数乘除和乘方【试题解析】由题知:所以故答案为:-216【答案】【解析】试题分析:由得, 考点:两角和与差的正切公式17【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:18【答案】 菱形;矩形 【解析】解:如图所示:EFAC,GHAC且EF=AC,GH=AC四边形EFGH是平行四边形又AC=BDEF=FG四边形EFGH是菱形由知四边形EFGH是平行四边形又ACBD,EFFG四边形EFGH是矩形故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题三、解答题19【答案】 【解析】(本题满分为13分)解:()=,T=2,当时,f(x)有最小值,当时,f(x)有最大值2()由,所以,所以,而,所以,即20【答案】(1)详见解析;(2)详见解析.【解析】试题解析:证明:(1)连接,直三棱柱中,四边形是矩形,故点在上,且为的中点,在中,分别是的中点,.又平面,平面,平面.考点:1.线面平行的判定定理;2.面面垂直的判定定理.21【答案】 【解析】解:(1)y=+,解得x2且x2且x3,函数y的定义域是(2,3)(3,+);(2)y=,解得x4且x1且x3,函数y的定义域是(,1)(1,3)(3,422【答案】 【解析】解:(1)由|2x1|+|2x+2|x+3,得:得x;得0x;得综上:不等式f(x)g(x)的解集为(2)a,x,a,f(x)=4x+a1由f(x)g(x)得:3x4a,即x依题意:,a(,a即a1a的取值范围是(,1 23【答案】 【解析】解:(1)a=1时,因为f(x)=xlnx,f(x)=1,当0x1时,f(x)0,此时函数f(x)单调递减当1xe时,f(x)0,此时函数f(x)单调递增所以函数f(x)的极小值为f(1)=1(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e上的最小值为1又g(x)=,所以当0xe时,g(x)0,此时g(x)单调递增所以g(x)的最大值为g(e)=,所以f(x)ming(x)max,所以在(1)的条件下,f(x)g(x)+【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题24【答案】 【解析】解:(1)设双曲线的方程为y2x2=(0),代入点P(3,4),可得=16,所求求双曲线的标准方程为(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,又由双曲线的几何

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论