




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷颍东区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知全集U=R,集合A=1,2,3,4,5,B=xR|x3,图中阴影部分所表示的集合为( )A1B1,2C1,2,3D0,1,22 设f(x)(exex)(),则不等式f(x)f(1x)的解集为( )A(0,) B(,)C(,) D(,0)3 在ABC中,a2=b2+c2+bc,则A等于( )A120B60C45D304 函数y=2sin2x+sin2x的最小正周期( )ABCD25 在正方体中, 分别为的中点,则下列直线中与直线 相交 的是( ) A直线 B直线 C. 直线 D直线6 sin(510)=( )ABCD7 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD8 某程序框图如图所示,则输出的S的值为( )A11B19C26D579 将函数f(x)=3sin(2x+)()的图象向右平移(0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则的值不可能是( )ABCD10已知xR,命题“若x20,则x0”的逆命题、否命题和逆否命题中,正确命题的个数是( )A0B1C2D311已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是( )A2BCD12函数y=|a|x(a0且a1)的图象可能是( )ABCD二、填空题13某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为,先采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数等于 .14已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是15当时,函数的图象不在函数的下方,则实数的取值范围是_【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力16设有一组圆Ck:(xk+1)2+(y3k)2=2k4(kN*)下列四个命题:存在一条定直线与所有的圆均相切;存在一条定直线与所有的圆均相交;存在一条定直线与所有的圆均不相交;所有的圆均不经过原点其中真命题的代号是(写出所有真命题的代号)17ABC中,BC=3,则C= 18空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点若AC=BD,则四边形EFGH是;若ACBD,则四边形EFGH是三、解答题19设圆C满足三个条件过原点;圆心在y=x上;截y轴所得的弦长为4,求圆C的方程20在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,(1)求证:为定值;(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由21在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q()求k的取值范围;()设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由22设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 23在直角坐标系xOy中,直线l的参数方程为为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为(1)写出圆C的直角坐标方程;(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标 24已知正项等差an,lga1,lga2,lga4成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d颍东区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中由韦恩图可知阴影部分表示的集合为(CUB)A,又A=1,2,3,4,5,B=xR|x3,CUB=x|x3,(CUB)A=1,2则图中阴影部分表示的集合是:1,2故选B【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想属于基础题2 【答案】【解析】选C.f(x)的定义域为xR,由f(x)(exex)()得f(x)(exex)()(exex)()(exex)()f(x),f(x)在R上为偶函数,不等式f(x)f(1x)等价于|x|1x|,即x212xx2,x,即不等式f(x)f(1x)的解集为x|x,故选C.3 【答案】A【解析】解:根据余弦定理可知cosA=a2=b2+bc+c2,bc=(b2+c2a2)cosA=A=120故选A4 【答案】C【解析】解:函数y=2sin2x+sin2x=2+sin2x=sin(2x)+1,则函数的最小正周期为=,故选:C【点评】本题主要考查三角恒等变换,函数y=Asin(x+)的周期性,利用了函数y=Asin(x+)的周期为,属于基础题5 【答案】D【解析】试题分析:根据已满治安的概念可得直线都和直线为异面直线,和在同一个平面内,且这两条直线不平行;所以直线和相交,故选D.考点:异面直线的概念与判断.6 【答案】C【解析】解:sin(510)=sin(150)=sin150=sin30=,故选:C7 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题8 【答案】C【解析】解:模拟执行程序框图,可得S=1,k=1k=2,S=4不满足条件k3,k=3,S=11不满足条件k3,k=4,S=26满足条件k3,退出循环,输出S的值为26故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的k,S的值是解题的关键,属于基本知识的考查9 【答案】C【解析】函数f(x)=sin(2x+)()向右平移个单位,得到g(x)=sin(2x+2),因为两个函数都经过P(0,),所以sin=,又因为,所以=,所以g(x)=sin(2x+2),sin(2)=,所以2=2k+,kZ,此时=k,kZ,或2=2k+,kZ,此时=k,kZ,故选:C【点评】本题考查的知识点是函数y=Asin(x+)的图象变换,三角函数求值,难度中档10【答案】C【解析】解:命题“若x20,则x0”的逆命题是“若x0,则x20”,是真命题;否命题是“若x20,则x0”,是真命题;逆否命题是“若x0,则x20”,是假命题;综上,以上3个命题中真命题的个数是2故选:C11【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=2x+z,由图可知zmax=21+1=3,zmin=2a+a=3a,由6a=3,得a=故选:B【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题12【答案】D【解析】解:当|a|1时,函数为增函数,且过定点(0,1),因为011,故排除A,B当|a|1时且a0时,函数为减函数,且过定点(0,1),因为10,故排除C故选:D二、填空题13【答案】【解析】考点:分层抽样方法14【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题15【答案】【解析】由题意,知当时,不等式,即恒成立令,令,在为递减,在为递增,则16【答案】 【解析】解:根据题意得:圆心(k1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项正确;考虑两圆的位置关系,圆k:圆心(k1,3k),半径为k2,圆k+1:圆心(k1+1,3(k+1),即(k,3k+3),半径为(k+1)2,两圆的圆心距d=,两圆的半径之差Rr=(k+1)2k2=2k+,任取k=1或2时,(Rrd),Ck含于Ck+1之中,选项错误;若k取无穷大,则可以认为所有直线都与圆相交,选项错误;将(0,0)带入圆的方程,则有(k+1)2+9k2=2k4,即10k22k+1=2k4(kN*),因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项正确则真命题的代号是故答案为:【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题17【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC=,又C为三角形的内角,且ca,0C,则C=故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围18【答案】 菱形;矩形 【解析】解:如图所示:EFAC,GHAC且EF=AC,GH=AC四边形EFGH是平行四边形又AC=BDEF=FG四边形EFGH是菱形由知四边形EFGH是平行四边形又ACBD,EFFG四边形EFGH是矩形故答案为:菱形,矩形【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题三、解答题19【答案】 【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,与y轴截取的弦OA=4,OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x2)2+(y2)2=8;当圆心C2在第三象限时,过C2作C2D垂直于x轴,C2B垂直于y轴,连接AC2,由C2在直线y=x上,得到C2B=C2D,则四边形OBC2D为正方形,与y轴截取的弦OA=4,OB=C2D,=OD=C2B=2,即圆心C2(2,2),在直角三角形ABC2中,根据勾股定理得:AC2=2,则圆C1方程为:(x+2)2+(y+2)2=8,圆C的方程为:(x2)2+(y2)2=8或(x+2)2+(y+2)2=8【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题20【答案】(1)证明见解析;(2)弦长为定值,直线方程为.【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得时为定值.试题解析:(1)设直线的方程为,由得,因此有为定值111(2)设存在直线:满足条件,则的中点,因此以为直径圆的半径,点到直线的距离,所以所截弦长为当,即时,弦长为定值2,这时直线方程为考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.21【答案】 【解析】解:()由已知条件,直线l的方程为,代入椭圆方程得整理得直线l与椭圆有两个不同的交点P和Q,等价于的判别式=,解得或即k的取值范围为()设P(x1,y1),Q(x2,y2),则,由方程, 又 而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数k【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题22【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键23【答案】 【解析】解:(1)圆C的极坐标方程为,可得直角坐标方程为x2+y2=2,即x2+(y)2=3;(2)设P(3+, t),C(0,),|PC|=,t=0时,P到圆心C的距离最小,P的直角坐标是(3,0) 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机器人清洁服务创新创业项目商业计划书
- 输液反应和急救措施
- 知识管理(KM)创新创业项目商业计划书
- 橡胶鞋材生产创新创业项目商业计划书
- 网红短视频内容创作工具创新创业项目商业计划书
- 智能柜台银行服务系统创新创业项目商业计划书
- 电影海报电商创新创业项目商业计划书
- 渔业养殖的气象服务创新创业项目商业计划书
- 水产品品牌国际化战略咨询创新创业项目商业计划书
- 2025年环保产业园区绿色产业集聚与区域产业结构优化报告
- 建筑工程造价课程设计实例
- 幼儿园速叠杯培训
- 初中劳动教育生活技能计划
- 新初中班主任培训
- DB13T 5252-2020 HDPE内衬修复供水管道技术规程
- 2025至2030年中国真空电机行业市场行情监测及前景战略研判报告
- 2025年船舶舾装件项目市场调查研究报告
- DB31/ 741-2020碳酸饮料单位产品能源消耗限额
- 2024生产安全事故应急预案
- 矿用电机车永磁电机驱动及能量回馈系统:技术革新与应用实践
- 医院后勤管理的安全风险防控措施
评论
0/150
提交评论