




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷乳源瑶族自治县三中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 函数y=2x2e|x|在2,2的图象大致为( )ABCD2 设是偶函数,且在上是增函数,又,则使的的取值范围是( )A或 B或 C D或3 函数f(x)=xsinx的图象大致是( )ABC D4 定义在1,+)上的函数f(x)满足:当2x4时,f(x)=1|x3|;f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是( )A1B2C或3D1或25 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=56 函数y=2|x|的图象是( )ABCD7 定义新运算:当ab时,ab=a;当ab时,ab=b2,则函数f(x)=(1x)x(2x),x2,2的最大值等于( )A1B1C6D128 已知双曲线=1的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )ABC3D59 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离10命题“aR,函数y=”是增函数的否定是( )A“aR,函数y=”是减函数B“aR,函数y=”不是增函数C“aR,函数y=”不是增函数D“aR,函数y=”是减函数11设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则,类比这个结论可知:四面体SABC的四个面的面积分别为S1、S2、S3、S4,内切球半径为r,四面体SABC的体积为V,则r=( )ABCD12已知x,y满足时,z=xy的最大值为( )A4B4C0D2二、填空题13函数的单调递增区间是14如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是已知样本中平均气温不大于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为15已知,若,则= 16已知圆,则其圆心坐标是_,的取值范围是_【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.17过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是18如图,在长方体ABCDA1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为三、解答题19如图,已知椭圆C,点B坐标为(0,1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q证明:OMON为定值;证明:A、Q、N三点共线 20已知函数f(x)=1+(2x2)(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域21已知Sn为等差数列an的前n项和,且a4=7,S4=16(1)求数列an的通项公式;(2)设bn=,求数列bn的前n项和Tn22提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 23(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,已知ksin Bsin Asin C(k为正常数),a4c.(1)当k时,求cos B;(2)若ABC面积为,B60,求k的值24已知函数f(x)=aln(x+1)+x2x,其中a为非零实数()讨论f(x)的单调性;()若y=f(x)有两个极值点,且,求证:(参考数据:ln20.693) 乳源瑶族自治县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D2 【答案】B考点:函数的奇偶性与单调性【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于轴对称,单调性在轴两侧相反,即在时单调递增,当时,函数单调递减.结合和对称性,可知,再结合函数的单调性,结合图象就可以求得最后的解集.13 【答案】A【解析】解:函数f(x)=xsinx满足f(x)=xsin(x)=xsinx=f(x),函数的偶函数,排除B、C,因为x(,2)时,sinx0,此时f(x)0,所以排除D,故选:A【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力4 【答案】D【解析】解:当2x4时,f(x)=1|x3|当1x2时,22x4,则f(x)=f(2x)=(1|2x3|),此时当x=时,函数取极大值;当2x4时,f(x)=1|x3|;此时当x=3时,函数取极大值1;当4x8时,24,则f(x)=cf()=c(1|3|),此时当x=6时,函数取极大值c函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,=,解得c=1或2故选D【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键5 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法6 【答案】B【解析】解:f(x)=2|x|=2|x|=f(x)y=2|x|是偶函数,又函数y=2|x|在0,+)上单调递增,故C错误且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键7 【答案】C【解析】解:由题意知当2x1时,f(x)=x2,当1x2时,f(x)=x32,又f(x)=x2,f(x)=x32在定义域上都为增函数,f(x)的最大值为f(2)=232=6故选C8 【答案】A【解析】解:抛物线y2=12x的焦点坐标为(3,0)双曲线的右焦点与抛物线y2=12x的焦点重合4+b2=9b2=5双曲线的一条渐近线方程为,即双曲线的焦点到其渐近线的距离等于故选A【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键9 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力10【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“aR,函数y=”是增函数的否定是:“aR,函数y=”不是增函数故选:C【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题11【答案】 C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和则四面体的体积为 R=故选C【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去一般步骤:找出两类事物之间的相似性或者一致性用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想)12【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=xy为y=xz,由图可知,当直线y=xz过点A时,直线在y轴上的截距最小,z有最大值为4故选:A【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题二、填空题13【答案】2,3) 【解析】解:令t=3+4xx20,求得1x3,则y=,本题即求函数t在(1,3)上的减区间利用二次函数的性质可得函数t在(1,3)上的减区间为2,3),故答案为:2,3)14【答案】9 【解析】解:平均气温低于22.5的频率,即最左边两个矩形面积之和为0.101+0.121=0.22,所以总城市数为110.22=50,平均气温不低于25.5的频率即为最右面矩形面积为0.181=0.18,所以平均气温不低于25.5的城市个数为500.18=9故答案为:915【答案】【解析】试题分析:因为,所以,又,因此,因为,所以,考点:指对数式运算16【答案】,. 【解析】将圆的一般方程化为标准方程,圆心坐标,而,的范围是,故填:,.17【答案】 【解析】解:抛物线C方程为y2=4x,可得它的焦点为F(1,0),设直线l方程为y=k(x1),由,消去x得设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=4|AF|=3|BF|,y1+3y2=0,可得y1=3y2,代入得2y2=,且3y22=4,消去y2得k2=3,解之得k=故答案为:【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题18【答案】114 【解析】解:根据题目要求得出:当53的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(54+55+34)2=114故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题三、解答题19【答案】 【解析】(1)解:设点E(t,t),B(0,1),A(2t,2t+1),点A在椭圆C上,整理得:6t2+4t=0,解得t=或t=0(舍去),E(,),A(,),直线AB的方程为:x+2y+2=0;(2)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:xM=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:xN=,OMON=|xM|xN|=2|=|=|=|=设直线MB的方程为:y=kx1(其中k=),联立,整理得:(1+2k2)x24kx=0,xQ=,yQ=,kAN=1,kAQ=1,要证A、Q、N三点共线,只需证kAN=kAQ,即3xN+4=2k+2,将k=代入,即证:xMxN=,由的证明过程可知:|xM|xN|=,而xM与xN同号,xMxN=,即A、Q、N三点共线【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题20【答案】 【解析】解:(1)函数f(x)=1+=,(2)函数的图象如图:(3)函数值域为:1,3)21【答案】 【解析】解:(1)设等差数列an的公差为d,依题意得(2分)解得:a1=1,d=2an=2n1(2)由得(7分)(11分)(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题22【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论