




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
双曲线及其标准方程,1. 椭圆的定义,2. 引入问题:,复习,|MF1|+|MF2|=2a( 2a|F1F2|0),如图(A),,|MF1|-|MF2|=常数,如图(B),,上面 两条合起来叫做双曲线,由可得:,| |MF1|-|MF2| | = 常数 (差的绝对值),|MF2|-|MF1|=常数,双曲线在生活中 ., 两个定点F1、F2双曲线的焦点;, |F1F2|=2c 焦距.,(1)2a |F1F2| ;,平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2)的点的轨迹叫做双曲线.,(2)2a 0 ;,双曲线定义,思考:,(1)若2a= |F1F2|,则轨迹是?,(2)若2a |F1F2|,则轨迹是?,说明,(3)若2a=0,则轨迹是?,| |MF1| - |MF2| | = 2a,(1)两条射线,(2)不表示任何轨迹,(3)线段F1F2的垂直平分线,方程表示的曲线是双曲线,方程表示的曲线是双曲线的右支,方程表示的曲线是x轴上分别以F1和F2为端点, 指向x轴的负半轴和正半轴的两条射线。,练习巩固:,如何建立适当的直角坐标系?,原则:尽可能使方程的形式简单、运算简单; (一般利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴.), 探讨建立平面直角坐标系的方案,方案一,(对称、“简洁”),x,求曲线方程的步骤:,双曲线的标准方程,1. 建系.,以F1,F2所在的直线为x轴,线段F1F2的中点为原点建立直角坐标系,2.设点,设M(x , y),则F1(-c,0),F2(c,0),3.列式,|MF1| - |MF2|=2a,4.化简,此即为焦点在x轴上的双曲线的标准方程,若建系时,焦点在y轴上呢?,问题:如何判断双曲线的焦点在哪个轴上?,练习:写出以下双曲线的焦点坐标,F(5,0),F(0,5),例1 已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上 一点P到F1、F2的距离的差的绝对值等于6,求双曲线 的标准方程., 2a = 6, c=5, a = 3, c = 5, b2 = 52-32 =16,所以所求双曲线的标准方程为:,练习1:如果方程 表示双曲线, 求m的取值范围.,分析:,方程 表示双曲线时,则m的取值 范围_.,变式一:,上题的椭圆与双曲线的一个交点为P, 焦点为F1,F2,求|PF1|.,变式:,|PF1|+|PF2|=10,分析:,| |MF1|-|MF2| | =2a( 2a|F1F2|),F ( c, 0) F(0, c),小结,F(c,0),F(c,0),a0,b0,但a不一定大于b,c2=a2+b2,ab0,a2=b2+c2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常用变压器简介教学设计中职专业课-电机与电气控制技术-智能设备运行与维护-装备制造大类
- 盘锦市中储粮2025秋招笔试行测高频题库及答案
- 中国广电伊春市2025秋招笔试行测题库及答案综合管理类
- 第22课 世界多极化与经济全球化说课稿高中历史必修 中外历史纲要(下)统编版(部编版)
- 4 繁星(教学设计)-四年级上册语文统编版
- 海南大学植物学课件资源
- 教学设计语文
- 3.1岩石与土壤的故事 教学设计-科学四年级下册教科版
- 《暑假安全教育要点提醒》主题班会 说课稿
- 委托司法鉴定申请书
- 精神分裂症并发糖尿病患者护理查房
- 当幸福来敲门全剧中英文台词
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 曲臂车操作规程含曲臂式高空作业车专项施工方案报审表
- DBJ-T 13-210-2023 福建省房屋市政工程基桩检测试验文件管理标准
- Unit+2+短语背诵版 高中英语北师大版(2019)必修第一册
- 质量月报范本
- FZ/T 52051-2018低熔点聚酯(LMPET)/聚酯(PET)复合短纤维
- 【精品】2020年职业病诊断医师资格培训考试题
- 派车单(标准样本)
- 广东省建筑施工安全管理资料统一用表2021年版(原文格式版)
评论
0/150
提交评论