




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲第2课时利用导数研究函数的极值、最值一、选择题1.(2016四川卷)已知a为函数f(x)x312x的极小值点,则a()A.4 B.2 C.4 D.2解析f(x)3x212,x0,2x2时,f(x)2时,f(x)0,x2是f(x)的极小值点.答案D2.函数f(x)x2ln x的最小值为()A. B.1 C.0 D.不存在解析f(x)x,且x0.令f(x)0,得x1;令f(x)0,得0x0,即a23a180,a6或a0时,f(x)2x0;当x0时,f(x)3x233(x1)(x1),当x0,f(x)是增函数,当1x0时,f(x)0时,ex1,aex0,r0).(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若400,求f(x)在(0,)内的极值.解(1)由题意可知xr,所求的定义域为(,r)(r,).f(x),f(x).所以当xr时,f(x)0;当rx0.因此,f(x)的单调递减区间为(,r),(r,);f(x)的单调递增区间为(r,r).(2)由(1)的解答可知f(r)0,f(x)在(0,r)上单调递增,在(r,)上单调递减.因此,xr是f(x)的极大值点,所以f(x)在(0,)内的极大值为f(r)100,f(x)在(0,)内无极小值;综上,f(x)在(0,)内极大值为100,无极小值.10.已知函数f(x)(xk)ex.(1)求f(x)的单调区间;(2)求f(x)在区间0,1上的最小值.解(1)由题意知f(x)(xk1)ex.令f(x)0,得xk1.f(x)与f(x)随x的变化情况如下表:x(,k1)k1(k1,)f(x)0f(x)ek1所以,f(x)的单调递减区间是(,k1);单调递增区间是(k1,).(2)当k10,即k1时,f(x)在0,1上单调递增,所以f(x)在区间0,1上的最小值为f(0)k;当0k11,即1k2时,f(x)在0,k1上单调递减,在k1,1上单调递增,所以f(x)在区间0,1上的最小值为f(k1)ek1;当k11,即k2时,f(x)在0,1上单调递减,所以f(x)在区间0,1上的最小值为f(1)(1k)e.综上,当k1时,f(x)在0,1上的最小值为f(0)k;当1k0,b0,且函数f(x)4x3ax22bx2在x1处有极值,若tab,则t的最大值为()A.2 B.3 C.6 D.9解析f(x)12x22ax2b,则f(1)122a2b0,则ab6,又a0,b0,则tab9,当且仅当ab3时取等号.答案D12.(2017上饶调研)若函数f(x)x3x2在区间(a,a5)上存在最小值,则实数a的取值范围是()A.5,0) B.(5,0)C.3,0) D.(3,0)解析由题意,f(x)x22xx(x2),故f(x)在(,2),(0,)上是增函数,在(2,0)上是减函数,作出其图像如图所示.令x3x2得,x0或x3,则结合图像可知,解得a3,0),故选C.答案C13.函数f(x)x33axb(a0)的极大值为6,极小值为2,则f(x)的单调递减区间是_.解析令f(x)3x23a0,得x,则f(x),f(x)随x的变化情况如下表:x(,)(,)(,)f(x)00f(x)极大值极小值从而解得所以f(x)的单调递减区间是(1,1).答案(1,1)14.(2017济南模拟)设函数f(x)ln(xa)x2.(1)若当x1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;(2)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln.解(1)f(x)2x,依题意,有f(1)0,故a.从而f(x),且f(x)的定义域为,当x0;当1x时,f(x)时,f(x)0.f(x)在区间,上单调递增,在上单调递减.(2)f(x)的定义域为(a,),f(x).方程2x22ax10的判别式4a28,若0,即a时,f(x)0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025兴业银行三明分行零售业务团队招聘笔试备考试题及答案解析
- 国家开发银行2026年校园招聘笔试模拟试题及答案解析
- 2025福建省轻安工程建设有限公司秋季招聘5人笔试模拟试题及答案解析
- 2025海南海口市美兰区白龙街道办事处招聘公益性岗位人员2人笔试模拟试题及答案解析
- 2025重庆市奉节县事业单位面向服务期满且考核合格“三支一扶”人员招聘工作人员26人笔试模拟试题及答案解析
- 2026中国邮政储蓄银行望江县支行校园招聘笔试备考试题及答案解析
- 2026中国华能华能左权煤电有限责任公司校园招聘笔试模拟试题及答案解析
- 2025广西柳州市社会福利医院编外聘用人员招聘19人笔试参考题库附答案解析
- 2025河南郑州惠济区卫生健康系统卫生专业人才引进及特岗全科医生、特招医学院校毕业生引进41人笔试模拟试题及答案解析
- 2026华能(苏州工业园区)发电有限责任公司应届高校毕业生招聘(江苏)笔试模拟试题及答案解析
- GB/T 45870.1-2025弹簧测量和试验参数第1部分:冷成形圆柱螺旋压缩弹簧
- 数据备份课件
- 银行集团管理办法
- 人行国内证管理办法
- 电厂钢结构安装方案(3篇)
- 部编版六年级下册语文小升初《词语积累与运用》专项检测卷 含答案
- 残运会应急预案管理办法
- 小儿急性阑尾炎护理查房
- T/SFABA 2-2016食品安全团体标准食品配料焙烤食品预拌粉
- 村集体合作入股协议书
- A-Level化学(A2)2024-2025年有机合成与分析化学深度学习试题
评论
0/150
提交评论