




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,高等数学图形演示,系统,高等数学是工科一门重要的基础课,课程长,延续 一年级上、下两个学期,课时达176或更多。学生在学习的过 程中,往往因缺乏对空间形体的想象能力,而感到学习困难。 对教师来说,课程紧,内容多,一直存在黑板画图难的问题。 怎样才能加强这种能力的训练和培养,使典型空间形式的图 像成为学生头脑中的一种常识,确实是个很值得研究、解决 的问题。 CAI课件高等数学图形演示系统就是为解决这个问题 而制作的。本课件演示的图形形象逼真、有较强的立体感,对 于复杂的空间几何关系,能够明确、清晰地用立体形象表达 出来;同时,每一个图形的演示都力图包括它的基本思想和,前 言,形成过程,并用动画体现出来。因此,它不仅可以加深印象, 在相当程度上起到甚至超过教具的作用,而且会引起学生对 数学的学习兴趣,有利于培养联想和创造力,也有利于自学。 本图形演示中各图的选题,以同济大学“高等数学”教 材为线索,以比较重要的概念、定理和空间图象较为典型而 又复杂的题目为主。内容包括一元函数微分学,一元函数积分 学,空间解析几何,多元函数微分学,二重积分,三重积分, 重积分应用,付立叶级数等八个部分。演示的图形共有148个。 演示的图形构成了高等数学比较完整的、与文字教材基本 配套的图形系统。 二重积分、三重积分涉及的立体区域画图是教与学中最大 的难点。本课件以此作为重点,给出了一系列曲面与曲面相 交的过程,交线的形状。力求清晰、逼真,突破这一难点,改 变讲到这儿时课堂上教师画不出、难讲清、用手比划的局面。,.,在三重积分部分,给出立体图形演示之前,先给出了“不画立体图做三重积分”训练,以便学生再遇到三重积分某些问题时,即使画不出立体图,也能识别曲顶柱体的上顶、下底和投影区域,解决计算立体体积、表面积、重心等等问题。 本图库注重基础知识,并充分利用图形演示的优势改革传统的教法。例如:各类极限定义的几何解释,导数、微分、弧微分、偏导数、全微分、方向导数的几何意义等都是本图库的内容。关于矢量积的分配律,证明很烦琐,略证或不证,学生又常有疑问。在本课件中,利用图形的“一投一转”,形象而又精练地完成了证明。再如:曲边梯形的面积,曲顶柱体的体积,一般讲到这些,教师要写很多板书,而其中实质性的思想元素法却很难体现出来。这里用连续的图形演示生动地表述了这个面积或体积的产生过程及其定义的实质,加上教师画龙点睛的讲解,会收到很好的效果。,.,本图库与传统教材相比,适当地增大了信息量。例如: 常用曲线的生成、旋轮线的应用、直纹面、渐近面等。对学 生普遍感兴趣但一般教科书没有涉及的少数图形问题也做了 研究和尝试。比如,关于二重极限不存在的一个典型例题, 一般都必讲而且只讲计算,其曲面的形状历来是个谜。本课 件做出了该曲面的立体图形,给出了清晰的几何的分析。目 的是启发学生的创新思维,供读者选用。 希望同学们能利用形数结合的方法,从空间几何图形的 演示与它的分析表达式二者关系的反复联想琢磨中,认识变 量怎样刻画运动,进一步加深对高等数学重点和难点的理解; 同时得到对空间几何图形想象力的锻炼,逐步学会画图;提 高解题准确度和速度;并能理论联系实际,提高创新能力。 本图库主要用于辅助教师在课上讲课,没有配音。课件 中每个图都一步步用动画演示,公式和简要的计算也一步步,.,出现。每两步的时间间隔由讲课教师掌握,以便于教师的讲 解启发和学生的思考练习。 由于研制者水平有限,错误和不足之处难免,希望读者 不吝指教.,.,本课件是高等数学课程的图形演示库,主要为了辅 助教师在课上讲课(因此没有配音),解决高等数学教师黑 板画图难的问题,从而提高学生的空间想象能力。其中每个 图都一步步用动画演示,公式和计算也一步步出现。每两步 的时间间隔由讲课教师掌握,可以按鼠标左键,或键,或 者按空格键来控制,以便于教师的讲解启发和学生的思考。 本图库在windows9x下正常运行。图库分九个部分:前 言,总目录;1 一元微分; 2 一元积分; 3 空间解 析; 4 多元微分;5 二重积分; 6 三重积分; 7 重积分的应用;8 付氏级数。每一部分各自设有主目录。 为便于检索,在每一部分的主目录中每一个图题后建立,说 明 书,了超级链接。比如:1中的 图8 ,读者点击该题目后的按 钮 ,可立即找到需要的图形“ 8. 导数的几何意义”。 为了检索快捷,每一页面的右下角都有返回本部分主目 录的按钮 ,读者若不想按顺序看下面的图,随时点击一 下这个按钮,就回到这一部分的主目录。再按照前述方法找 您需要的图即可。 若想选择组成某个图形的第几张幻灯片,请单击右键, 再指“定位”,在下拉菜单中指“按标题”,就可以找到您 需要的那张幻灯片,点击它即可。,.,1 一元函数微分学 1 函数极限的几何解释 2 函数的左极限 3 x时的极限 4 x趋于正无穷时的极限 5 数列的极限 6 无穷大 7 函数的连续性 8 数的几何意义 9 微分的几何意义 对函数进行全面讨论并画图: 2 一元函数积分学 19 曲边梯形的面积,y = x2arctanx,11,12,13,14,15,16,总 目 录,17 弧微分,10,18 曲率,22 曲边扇形的面积 23 旋轮线 24 旋轮线也叫摆线,20,21,求由双纽线,内部的面积。,37 平行截面面积已知的立体体积 38 半径为R的正圆柱体被通过其底的直径并与底面成角的平面所截,得一圆柱 楔。求其体积。 39 求以半径为R的圆为底,平行且等于底圆直径的线段为顶,高为h的正劈锥体 的体积。 40 旋转体体积(y =f (x)绕x轴) 41 旋转体体积(x =g(y)绕y轴) 42 旋转体体积(柱壳法) 43 旋转体的侧面积,33,34,35,36,.,25 旋轮线是最速降线 26 心形线 27 星形线 28 圆的渐伸线 29 笛卡儿叶形线 30 双纽线 31 阿基米德螺线 32 对数螺线,3 空间解析几何 44 直角坐标系 45 两矢量和在轴上的投影 46 矢量积的分配律的证明 47 混合积的几何意义 48 一般柱面F(x, y)=0 49 一般柱面F(y, z)=0 50 椭圆柱面 51 双曲柱面 52 抛物柱面 53 旋转面 54 双叶旋转双曲面 55 单叶旋转双曲面 56 旋转锥面 57 旋转抛物面 58 环面 59 椭球面 60 椭圆抛物面 61 双曲抛物面 62 双曲面的渐近曲面 63 单叶双曲面是直纹面 64 双曲抛物面是直纹面 65 一般锥面 66 空间曲线圆柱螺线 67 空间曲线在坐标面上的投影 68 空间曲线作为投影柱面的交线(1) 69 空间曲线作为投影柱面的交线(2) 70 作出平面y=0 , z=0,3x+y =6, 3x+2y =12 和 x+y+z = 6所围成的立体图形,.,71,73,72,的图形,该函数,81,二元函数,而,4 多元函数微分学 74 二重极限存在的例子 75 二重极限不存在的例子 76 偏导数的几何意义 77 全微分的几何意义 78 方向导数 79 七框图 80 多元函数的极值,.,85 二重积分的计算:D是矩形区域 86 二重积分的计算:D是曲线梯形区域 87 二重积分计算的两种积分顺序,5 二重积分,84,多元函数积分学概况,82,83 曲顶柱体的体积,88,89,90,91 将二重积分化成二次积分.,D: x+y =1 , xy =1,x= 0 所围,92 将二重积分化成二次积分,3x2y+1 = 0 共同围成的区域,D: 由四条直线 : x =3,x = 5, 3x2y+4 = 0,93 将二重积分换序:,.,95 (练习)将二重积分化成二次积分,96 为什么引用极坐标计算二重积分,94 将二重积分换序:,97 利用极坐标计算二重积分 98 怎样用极坐标计算二重积分 (1) 极点位于区域 D 的外部 99 怎样用极坐标计算二重积分 (2) 极点位于区域 D 的内部,100,102,103,101,106 将积分化为极坐标形式,105 将积分换序,104,.,6 三重积分,计算下列三重积分:, =a ,b ; c ,d ; e , g,107,108 为曲顶柱体,109,:平面 x=0, y=0 , z=0,x+2y+z =1所围成的区域.,110,:平面 y=0 ,z=0,3x+y=6, 3x+2y=12, 和 x+y+z=6 所围成的区域。,111,112,113,114,117 柱面坐标 118 柱面坐标的坐标面 119 柱面坐标下的体积元素,120,121,计算,.,115 计算三重积分的另一思路(对有的问题适用) 116 例,计算,122 球面坐标 123 球面坐标的坐标面 124 球面坐标下的体积元素,125,126,127,128,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隧道监控量测必测项目表
- 灯具安装方案
- 河北省承德市隆化县2023-2024学年四年级下学期数学期末数学试卷(含答案)
- IT创新创业教育基础 课件 第1-3讲-IT创新创业的基本概念-IT创新创业成功要素
- 新疆生产建设兵团第三师图木舒克市第一中学2022-2023学年高二下学期期末考试化学试题(含答案)
- 汽车传感器与检测技术电子教案:现代检测系统的构成
- 黑龙江省哈尔滨市2022-2023学年高二下学期期末考试化学试题(含答案)
- 从化团建活动策划方案
- 付费学员活动方案
- 代扣代缴业务活动方案
- JT-T-1116-2017公路铁路并行路段设计技术规范
- DL-T5191-2004风力发电场项目建设工程验收规程
- 回迁房买卖合同模板
- 2024入团知识题库(含答案)
- 2024年水利工程行业技能考试-水利系统职称考试水利专业技术人员职称笔试参考题库含答案
- JJG 693-2011可燃气体检测报警器
- 施工企业双重预防机制建设流程讲解(汇编)
- 统编版五年级下册第二单元“古典名著”大单元整体学习设计
- 人教版五年级数学下册第八单元分层作业设计
- 2024年度医院口腔科实习生带教计划课件
- 剖宫产术后肠梗阻护理课件
评论
0/150
提交评论