



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3数学归纳法(一)一、基础达标1某个命题与正整数有关,如果当nk(kN*)时,该命题成立,那么可推得nk1时,该命题也成立现在已知当n5时,该命题成立,那么可推导出()A当n6时命题不成立 B当n6时命题成立C当n4时命题不成立 D当n4时命题成立答案B2一个与正整数n有关的命题,当n2时命题成立,且由nk时命题成立可以推得nk2时命题也成立,则()A该命题对于n2的自然数n都成立B该命题对于所有的正偶数都成立C该命题何时成立与k取值无关D以上答案都不对答案B解析由nk时命题成立可以推出nk2时命题也成立且n2,故对所有的正偶数都成立3在应用数学归纳法证明凸n边形的对角线为n(n3)条时,第一步验证n等于()A1 B2 C3 D0答案C解析因为是证凸n边形,所以应先验证三角形,故选C.4若f(n)1(nN*),则n1时f(n)是()A1 B.C1 D以上答案均不正确答案C5用数学归纳法证明12222n12n1(nN*)的过程中,第二步假设当nk(kN*)时等式成立,则当nk1时应得到_答案12222k12k2k11解析由nk到nk1等式的左边增加了一项6已知f(n)(nN*),则f(k1)_.答案f(k)7用数学归纳法证明(nN*)证明(1)当n1时,左边1,右边,等式成立(2)假设当nk(k1,kN*)时等式成立,即,当nk1时,所以当nk1时等式也成立由(1)(2)可知,对于任意nN*等式都成立二、能力提升8用数学归纳法证明等式(n1)(n2)(nn)2n13(2n1)(nN*),从k到k1左端需要增乘的代数式为()A2k1 B2(2k1)C. D.答案B解析nk1时,左端为(k2)(k3)(k1)(k1)(k1)k(2k2)(k1)(k2)(kk)(2k1)2,应增乘2(2k1)9已知f(n),则()Af(n)中共有n项,当n2时,f(2)Bf(n)中共有n1项,当n2时,f(2)Cf(n)中共有n2n项,当n2时,f(2)Df(n)中共有n2n1项,当n2时,f(2)答案D解析观察分母的首项为n,最后一项为n2,公差为1,项数为n2n1.10以下用数学归纳法证明“242nn2n(nN*)”的过程中的错误为_答案缺少步骤(1),没有递推的基础证明假设当nk(kN*)时等式成立,即242kk2k,那么242k2(k1)k2k2(k1)(k1)2(k1),即当nk1时等式也成立因此对于任何nN*等式都成立11用数学归纳法证明:12223242(1)n1n2(1)n1.证明(1)当n1时,左边1,右边(1)111,结论成立(2)假设当nk时,结论成立即12223242(1)k1k2(1)k1,那么当nk1时,12223242(1)k1k2(1)k(k1)2(1)k1(1)k(k1)2(1)k(k1)(1)k(1)k11.即nk1时结论也成立由(1)(2)可知,对一切正整数n都有此结论成立12已知数列an的第一项a15且Sn1an(n2,nN*),Sn为数列an的前n项和(1)求a2,a3,a4,并由此猜想an的表达式;(2)用数学归纳法证明an的通项公式(1)解a2S1a15,a3S2a1a210,a4S3a1a2a3551020,猜想an.(2)证明当n2时,a252225,公式成立假设nk(k2,kN*)时成立,即ak52k2,当nk1时,由已知条件和假设有ak1Ska1a2a3ak551052k2.552k152(k1)2.故nk1时公式也成立由可知,对n2,nN*,有an52n2.所以数列an的通项公式为an.三、探究与创新13已知数列an的前n项和Sn1nan(nN*)(1)计算a1,a2,a3,a4;(2)猜想an的表达式,并用数学归纳法证明你的结论解(1)计算得a1;a2;a3;a4.(2)猜想an.下面用数学归纳法证明:当n1时,猜想显然成立假设nk(kN*)时,猜想成立,即ak.那
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论