高中数学推理与证明6.1合情推理和演绎推理6.1.3演绎推理6.1.4合情推理与演绎推理的关系分层训练湘教版.docx_第1页
高中数学推理与证明6.1合情推理和演绎推理6.1.3演绎推理6.1.4合情推理与演绎推理的关系分层训练湘教版.docx_第2页
高中数学推理与证明6.1合情推理和演绎推理6.1.3演绎推理6.1.4合情推理与演绎推理的关系分层训练湘教版.docx_第3页
高中数学推理与证明6.1合情推理和演绎推理6.1.3演绎推理6.1.4合情推理与演绎推理的关系分层训练湘教版.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6.1.3演绎推理61.4合情推理与演绎推理的关系一、基础达标1下列表述正确的是()归纳推理是由部分到整体的推理;归纳推理是由一般到一般的推理;演绎推理是由一般到特殊的推理;类比推理是由特殊到一般的推理;类比推理是由特殊到特殊的推理A B C D答案D解析根据归纳推理,演绎推理,类比推理的概念特征可以知道正确2论语学路篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足”上述推理用的是()A类比推理 B归纳推理C演绎推理 D一次三段论答案C解析这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式3正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin (x21)是奇函数以上推理()A结论正确 B大前提不正确C小前提不正确 D全不正确答案C解析由于函数f(x)sin (x21)不是正弦函数故小前提不正确4“四边形ABCD是矩形,四边形ABCD的对角线相等”以上推理的大前提是()A正方形都是对角线相等的四边形B矩形都是对角线相等的四边形C等腰梯形都是对角线相等的四边形D矩形都是对边平行且相等的四边形答案B解析利用三段论分析:大前提:矩形都是对角线相等的四边形;小前提:四边形ABCD是矩形;结论:四边形ABCD的对角线相等5三段论:“小宏在2013年的高考中考入了重点本科院校;小宏在2013年的高考中只要正常发挥就能考入重点本科院校;小宏在2013年的高考中正常发挥”中,“小前提”是_(填序号)答案解析在这个推理中,是大前提,是小前提,是结论6在求函数y的定义域时,第一步推理中大前提是当有意义时,a0;小前提是有意义;结论是_答案y的定义域是4,)解析由大前提知log2x20,解得x4.7用三段论证明:直角三角形两锐角之和为90.证明因为任意三角形内角之和为180(大前提),而直角三角形是三角形(小前提),所以直角三角形内角之和为180(结论)设直角三角形两个锐角分别为A、B,则有AB90180,因为等量减等量差相等(大前提),(AB90)9018090(小前提),所以AB90(结论)二、能力提升8“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故某奇数(S)是3的倍数(P)”上述推理是()A小前提错 B结论错 C正确的 D大前提错答案C解析由三段论推理概念知推理正确9已知三条不重合的直线m、n、l,两个不重合的平面、,有下列命题:若mn,n,则m;若l,m且lm,则;若m,n,m,n,则;若,m,n,nm,则n.其中正确的命题个数是()A1 B2 C3 D4答案B解析中,m还可能在平面内,错误;正确;中,m与n相交时才成立,错误;正确故选B.10已知函数f(x)满足:f(1),4f(x)f(y)f(xy)f(xy)(x,yR),则f(2 010)_.答案解析令y1得4f(x)f(1)f(x1)f(x1)即f(x)f(x1)f(x1)令x取x1则f(x1)f(x2)f(x)由得f(x)f(x2)f(x)f(x1),即f(x1)f(x2),f(x)f(x3),f(x3)f(x6)f(x)f(x6),即f(x)周期为6,f(2 010)f(63350)f(0)对4f(x)f(y)f(xy)f(xy),令x1,y0,得4f(1)f(0)2f(1),f(0),即f(2 010).11用演绎推理证明函数f(x)|sin x|是周期函数证明大前提:若函数yf(x)对于定义域内的任意一个x值满足f(xT)f(x)(T为非零常数),则它为周期函数,T为它的一个周期小前提:f(x)|sin(x)|sin x|f(x)结论:函数f(x)|sin x|是周期函数12S为ABC所在平面外一点,SA平面ABC,平面SAB平面SBC.求证:ABBC.证明如图,作AESB于E.平面SAB平面SBC,平面SAB平面SBCSB.AE平面SAB.AE平面SBC,又BC平面SBC.AEBC.又SA平面ABC,SABC.SAAEA,SA平面SAB,AE平面SAB,BC平面SAB.AB平面SAB.ABBC.三、探究与创新13设f(x),g(x)(其中a0且a1)(1)523请你推测g(5)能否用f(2),f(3),g(2),g(3)来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广解(1)由f(3)g(2)g(3)f(2),又g(5)因此,g(5)f(3)g(2)g(3)f(2)(2)由g(5)f(3)g(2)g(3)f(2),即g(23)f(3)g(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论