



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时分层训练(五十七)定点、定值、范围、最值问题1(2017山西临汾一中月考)已知椭圆C:y21(a0),过椭圆C的右顶点和上顶点的直线与圆x2y2相切(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1k22,证明:直线AB过定点解(1)直线过点(a,0)和(0,1),直线的方程为xaya0,直线与圆x2y2相切,解得a22,椭圆C的方程为y21.(2)证明:当直线AB的斜率不存在时,设A(x0,y0),则B(x0,y0),由k1k22得2,解得x01.当直线AB的斜率存在时,设AB的方程为ykxm(m1),A(x1,y1),B(x2,y2),由(12k2)x24kmx2m220,得x1x2,x1x2,由k1k2222,即(22k)x1x2(m1)(x1x2)(22k)(2m22)(m1)(4km),即(1k)(m21)km(m1),由m1,得(1k)(m1)kmkm1,即ykxm(m1)xmm(x1)yx,故直线AB过定点(1,1)综上,直线AB过定点(1,1)2(2018云南二检)已知点A,B是椭圆C:1(ab0)的左、右顶点,F为左焦点,点P是椭圆上异于A,B的任意一点直线AP与过点B且垂直于x轴的直线l交于点M,直线MNBP于点N.(1)求证:直线AP与直线BP的斜率之积为定值;(2)若直线MN过焦点F,(R),求实数的值. 【导学号:79140311】解(1)证明:设P(x0,y0)(x0a),由已知A(a,0),B(a,0),kAPkBP.点P在椭圆上,1.由得kAPkBP.直线AP与直线BP的斜率之积为定值.(2)设直线AP与BP的斜率分别为k1,k2,由已知F(c,0),直线AP的方程为yk1(xa),直线l的方程为xa,则M(a,2ak1)MNBP,kMNk21.由(1)知k1k2,kMNk1.又F,N,M三点共线,得kMFkMN,即k1,得2b2a(ac)b2a2c2,2(a2c2)a2ac,化简整理得2c2aca20,即210,解得或1(舍去)a2c.由,得(ac,0)(ac,0),将a2c代入,得(c,0)(3c,0),即c3c,.3(2018呼和浩特一调)已知抛物线C1的方程为y24x,椭圆C2与抛物线C1有公共的焦点,且C2的中心在坐标原点,过点M(4,0)的直线l与抛物线C1分别交于A,B两点(1)若,求直线l的方程;(2)若坐标原点O关于直线l的对称点P在抛物线C1上,直线l与椭圆C2有公共点,求椭圆C2的长轴长的最小值. 【导学号:79140312】解(1)当直线l的斜率不存在时,lx轴,与已知矛盾,所以直线l的斜率必存在设直线l的斜率为k(k0),则直线l的方程为yk(x4)联立消去x,得ky24y16k0,所以1664k20.设A(x1,y1),B(x2,y2),则又因为,所以(4x1,y1)(x24,y2),即y1y2.由式消去y1,y2,得k22,即k或k,故直线l的方程为yx4或yx4.(2)设P(m,n),则OP的中点为.因为O,P两点关于直线yk(x4)对称,所以解得将其代入抛物线方程,得4.所以k21.设椭圆的方程为1(ab0),则a2b21,即b2a21.联立消去y,得(b2a2k2)x28k2a2x16a2k2a2b20.因为直线与椭圆有交点,所以(8k2a2)24(b2a2k2)(16a2k2a2b2)0.化简整理得4a2b2(b2a2k216k2) 4a2(a21)(2a217)0.所以(a21)(2a217)0.因为a2b211,所以2a217.所以2a,因此椭圆C2的长轴长的最小值为.4(2016全国卷)已知椭圆E:1的焦点在x轴上,A是E的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA.(1)当t4,|AM|AN|时,求AMN的面积;(2)当2|AM|AN|时,求k的取值范围解设M(x1,y1),则由题意知y10.(1)当t4时,E的方程为1,A(2,0)由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为yx2.将xy2代入1得7y212y0.解得y0或y,所以y1.因此AMN的面积SAMN2.(2)由题意t3,k0,A(,0)将直线AM的方程yk(x)代入1得(3tk2)x22tk2xt2k23t0.由x1()得x1,故|AM|x1|.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河源公务面试题及答案
- 干部选聘笔试题及答案
- 输尿管肿瘤考试题及答案
- 2025年广西玉林师范学院招聘考试笔试试题(含答案)
- 国家基本公共卫生服务项目乡村医生疾控包培训课前试题(附答案)
- 2025年施工员之土建施工基础知识通关考试题库带答案解析
- 药物警戒相关法规考试试题及答案
- 功能性子宫出血的护理试题(附答案)
- 2025年医保知识考试试题库及答案
- 2024年建筑工程《地基与复合地基静荷载试验》检测知识考试题库与答案
- 生产排产管理办法
- 2025年标准黑龙江水利安全员试题及答案
- 中国智能超市手推车行业市场前景预测及投资方向研究报告
- 奥尔夫音乐教师培训课件
- 幼儿园防蚊虫健康活动
- 渝23TJ02 丁基橡胶弹性体复合高分子自粘防水卷材建筑防水构造 DJBT50-167
- 第13课-他们都说我包的饺子好吃(口语)
- 2025年兵团普通职工考试试题及答案
- JJG 667-2025液体容积式流量计检定规程
- 合理用药考试题及答案
- 介入术后迷走神经反射护理讲课件
评论
0/150
提交评论