江苏省2019届高考数学专题二立体几何2.2大题考法—平行与垂直讲义.docx_第1页
江苏省2019届高考数学专题二立体几何2.2大题考法—平行与垂直讲义.docx_第2页
江苏省2019届高考数学专题二立体几何2.2大题考法—平行与垂直讲义.docx_第3页
江苏省2019届高考数学专题二立体几何2.2大题考法—平行与垂直讲义.docx_第4页
江苏省2019届高考数学专题二立体几何2.2大题考法—平行与垂直讲义.docx_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二讲 大题考法平行与垂直题型(一)线线、线面位置关系的证明平行、垂直关系的证明是高考的必考内容,主要考查线面平行、垂直的判定定理及性质定理的应用,以及平行与垂直关系的转化等. 典例感悟例1(2017江苏高考)如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.证明(1)在平面ABD内,因为ABAD,EFAD,所以EFAB.又因为EF平面ABC,AB平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面ABD平面BCDBD,BC平面BCD,BCBD,所以BC平面ABD.因为AD平面ABD,所以BCAD.又ABAD,BCABB,AB平面ABC,BC平面ABC,所以AD平面ABC.又因为AC平面ABC,所以ADAC.方法技巧立体几何证明问题的2个注意点(1)证明立体几何问题的主要方法是定理法,解题时必须按照定理成立的条件进行推理如线面平行的判定定理中要求其中一条直线在平面内,另一条直线必须说明它在平面外;线面垂直的判定定理中要求平面内的两条直线必须是相交直线等,如果定理的条件不完整,则结论不一定正确(2)证明立体几何问题,要紧密结合图形,有时要利用平面几何的相关知识,因此需要多画出一些图形辅助使用演练冲关1.(2018苏锡常镇调研)如图,在四棱锥PABCD中,ADB90,CBCD,点E为棱PB的中点(1)若PBPD,求证:PCBD;(2)求证:CE平面PAD.证明:(1)取BD的中点O,连结CO,PO,因为CDCB,所以BDCO.因为PBPD,所以BDPO.又POCOO,所以BD平面PCO.因为PC平面PCO,所以PCBD.(2)由E为PB中点,连结EO,则EOPD,又EO平面PAD,PD平面PAD,所以EO平面PAD.由ADB90,以及BDCO,所以COAD,又CO平面PAD,所以CO平面PAD.又COEOO,所以平面CEO平面PAD,而CE平面CEO,所以CE平面PAD.2(2018苏州模拟)在如图所示的空间几何体ABCDPE中,底面ABCD是边长为4的正方形,PA平面ABCD,PAEB,且PAAD4,EB2.(1)若点Q是PD的中点,求证:AQ平面PCD;(2)证明:BD平面PEC.证明:(1)因为PAAD,Q是PD的中点,所以AQPD.又PA平面ABCD,所以CDPA.又CDDA,PADAA,所以CD平面ADP.又因为AQ平面ADP,所以CDAQ,又PDCDD,所以AQ平面PCD.(2)如图,取PC的中点M,连结AC交BD于点N,连结MN,ME,在PAC中,易知MNPA,MNPA,又PAEB,EBPA,所以MNEB,MNEB,所以四边形BEMN是平行四边形,所以EMBN.又EM平面PEC,BN平面PEC,所以BN平面PEC,即BD平面PEC.题型(二)两平面之间位置关系的证明考查面面平行和面面垂直,都需要用判定定理,其本质是考查线面垂直和平行. 典例感悟例2(2018南京模拟)如图,直线PA垂直于圆O所在的平面,ABC内接于圆O,且AB为圆O的直径,M为线段PB的中点,N为线段BC的中点求证:(1)平面MON平面PAC;(2)平面PBC平面MON.证明(1)因为M,O,N分别是PB,AB,BC的中点,所以MOPA,NOAC,又MONOO,PAACA,所以平面MON平面PAC.(2)因为PA平面ABC,BC平面ABC,所以PABC.由(1)知,MOPA,所以MOBC.连结OC,则OCOB,因为N为BC的中点,所以ONBC.又MOONO,MO平面MON,ON平面MON,所以BC平面MON.又BC平面PBC,所以平面PBC平面MON.方法技巧证明两平面位置关系的求解思路(1)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行(2)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决. 演练冲关(2018江苏高考)在平行六面体ABCDA1B1C1D1中,AA1AB,AB1B1C1.求证:(1)AB平面A1B1C;(2)平面ABB1A1平面A1BC.证明:(1)在平行六面体ABCDA1B1C1D1中,ABA1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB平面A1B1C.(2)在平行六面体ABCDA1B1C1D1中,四边形ABB1A1为平行四边形又因为AA1AB,所以四边形ABB1A1为菱形,因此AB1A1B.因为AB1B1C1,BCB1C1,所以AB1BC.因为A1BBCB,A1B平面A1BC,BC平面A1BC,所以AB1平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1平面A1BC.题型(三)空间位置关系的综合问题主要考查空间线面、面面平行或垂直的位置关系的证明与翻折或存在性问题相结合的综合问题.典例感悟例3如图1,在矩形ABCD中,AB4,AD2,E是CD的中点,将ADE沿AE折起,得到如图2所示的四棱锥D1ABCE,其中平面D1AE平面ABCE.(1)证明:BE平面D1AE;(2)设F为CD1的中点,在线段AB上是否存在一点M,使得MF平面D1AE,若存在,求出的值;若不存在,请说明理由解(1)证明:四边形ABCD为矩形且ADDEECBC2,AEBE2.又AB4,AE2BE2AB2,AEB90,即BEAE.又平面D1AE平面ABCE,平面D1AE平面ABCEAE,BE平面ABCE,BE平面D1AE.(2),理由如下:取D1E的中点L,连接FL,AL,FLEC,FLEC1.又ECAB,FLAB,且FLAB,M,F,L,A四点共面若MF平面AD1E,则MFAL.四边形AMFL为平行四边形,AMFLAB,即.方法技巧与平行、垂直有关的存在性问题的解题步骤演练冲关(2018全国卷)如图,在平行四边形ABCM中,ABAC3,ACM90.以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BPDQDA,求三棱锥QABP的体积解:(1)证明:由已知可得,BAC90,即BAAC.又因为BAAD,ACADA,所以AB平面ACD.因为AB平面ABC,所以平面ACD平面ABC.(2)由已知可得,DCCMAB3,DA3.又BPDQDA,所以BP2.如图,过点Q作QEAC,垂足为E,则QE綊DC.由已知及(1)可得,DC平面ABC,所以QE平面ABC,QE1.因此,三棱锥QABP的体积为VQABPSABPQE32sin 4511.课时达标训练A组大题保分练1.如图,在三棱锥VABC中,O,M分别为AB,VA的中点,平面VAB平面ABC,VAB是边长为2的等边三角形,ACBC且ACBC.(1)求证:VB平面MOC;(2)求线段VC的长解:(1)证明:因为点O,M分别为AB,VA的中点,所以MOVB.又MO平面MOC,VB平面MOC,所以VB平面MOC.(2)因为ACBC,O为AB的中点,ACBC,AB2,所以OCAB,且CO1.连结VO,因为VAB是边长为2的等边三角形,所以VO.又平面VAB平面ABC,OCAB,平面VAB平面ABCAB,OC平面ABC,所以OC平面VAB,所以OCVO,所以VC2.2(2018南通二调)如图,在直三棱柱ABCA1B1C1中,ACBC,A1B与AB1交于点D,A1C与AC1交于点E. 求证:(1)DE平面B1BCC1;(2)平面A1BC平面A1ACC1.证明:(1)在直三棱柱ABCA1B1C1中,四边形A1ACC1为平行四边形又E为A1C与AC1的交点, 所以E为A1C的中点. 同理,D为A1B的中点,所以DEBC. 又BC平面B1BCC1,DE平面B1BCC1,所以DE平面B1BCC1. (2)在直三棱柱ABCA1B1C1中,AA1平面ABC,又BC平面ABC,所以AA1BC.又ACBC,ACAA1A,AC平面A1ACC1,AA1平面A1ACC1,所以BC平面A1ACC1.因为BC平面A1BC,所以平面A1BC平面A1ACC1.3.如图,在三棱锥ABCD中,E,F分别为棱BC,CD上的点,且BD平面AEF.(1)求证:EF平面ABD;(2)若BDCD,AE平面BCD,求证:平面AEF平面ACD.证明:(1)因为BD平面AEF,BD平面BCD,平面AEF平面BCDEF,所以 BDEF.因为BD平面ABD,EF平面ABD,所以 EF平面ABD.(2)因为AE平面BCD,CD平面BCD,所以AECD.因为BDCD,BDEF,所以 CDEF,又AEEFE,AE平面AEF,EF平面AEF,所以CD平面AEF.又CD平面ACD,所以平面AEF平面ACD.4(2018无锡期末)如图,ABCD是菱形,DE平面ABCD,AFDE,DE2AF.求证:(1)AC平面BDE;(2)AC平面BEF.证明:(1)因为DE平面ABCD,AC平面ABCD,所以DEAC.因为四边形ABCD是菱形,所以ACBD,因为DE平面BDE,BD平面BDE,且DEBDD,所以AC平面BDE.(2)设ACBDO,取BE中点G,连结FG,OG,易知OGDE且OGDE.因为AFDE,DE2AF,所以AFOG且AFOG,从而四边形AFGO是平行四边形,所以FGAO.因为FG平面BEF,AO平面BEF,所以AO平面BEF,即AC平面BEF.B组大题增分练1(2018盐城三模)在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,M,N分别是棱A1D1,D1C1的中点求证:(1)AC平面DMN;(2)平面DMN平面BB1D1D.证明:(1)连结A1C1,在四棱柱ABCDA1B1C1D1中,因为AA1綊BB1,BB1綊CC1,所以AA1綊CC1,所以A1ACC1为平行四边形,所以A1C1AC.又M,N分别是棱A1D1,D1C1的中点,所以MNA1C1,所以ACMN.又AC平面DMN,MN平面DMN,所以AC平面DMN.(2)因为四棱柱ABCDA1B1C1D1是直四棱柱,所以DD1平面A1B1C1D1,而MN平面A1B1C1D1,所以MNDD1.又因为棱柱的底面ABCD是菱形,所以底面A1B1C1D1也是菱形,所以A1C1B1D1,而MNA1C1,所以MNB1D1.又MNDD1,DD1平面BB1D1D,B1D1平面BB1D1D,且DD1B1D1D1,所以MN平面BB1D1D.而MN平面DMN,所以平面DMN平面BB1D1D.2.如图,在四棱锥PABCD中,PA底面ABCD,ABCD,ABBC,ABBC1,DC2,点E在PB上(1)求证:平面AEC平面PAD;(2)当PD平面AEC时,求PEEB的值解:(1)证明:在平面ABCD中,过A作AFDC于F,则CFDFAF1,DACDAFFAC454590,即ACDA.又PA平面ABCD,AC平面ABCD,ACPA.PA平面PAD,AD平面PAD,且PAADA,AC平面PAD.又AC平面AEC,平面AEC平面PAD.(2)连结BD交AC于O,连结EO.PD平面AEC,PD平面PBD,平面PBD平面AECEO,PDEO,则PEEBDOOB.又DOCBOA,DOOBDCAB21,PEEB的值为2.3.(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)如图,在三棱柱ABCA1B1C1中,已知ABAC,点E,F分别在棱BB1,CC1上(均异于端点),且ABEACF,AEBB1,AFCC1.求证:(1)平面AEF平面BB1C1C;(2)BC平面AEF.证明:(1)在三棱柱ABCA1B1C1中,BB1CC1.因为AFCC1,所以AFBB1.又AEBB1,AEAFA,AE平面AEF,AF平面AEF,所以BB1平面AEF.又因为BB1平面BB1C1C,所以平面AEF平面BB1C1C.(2)因为AEBB1,AFCC1,ABEACF,ABAC,所以RtAEBRtAFC.所以BECF.又BECF,所以四边形BEFC是平行四边形从而BCEF.又BC平面AEF,EF平面AEF,所以BC平面AEF.4(2018常州期末)如图,四棱锥PABCD的底面ABCD是平行四边形,PC平面ABCD,PBPD,点Q是棱PC上异于P,C的一点(1)求证:BDAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论