已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
极大似然估计法,极大似然原理的直观想法是:一个随机试验如有若干个可能的结果A,B,C,.若在一次试验中,结果A出现, 则一般认为A出现的概率最大,也即试验条件对A出现有利.或者说在试验的很多可能条件中,认为应该是使事件A发生的概率为最大的那种条件存在.,极大似然估计的基本思想,例:假若一个盒子里有许多白球和红球,而且已知它们的数目之比是3:1,但不知是白球多还是红球多.设随机地在盒子中取一球为白球的概率是p.如果有放回地从盒子里取3个球,那么白球数目X服从二项分布,如果样本中白球数为0,则应估计p=1/4,而不估计p=3/4.因为具有X=0的样本来自p=1/4的总体的可能性比来自p=3/4的总体的可能性要大.一般当X=0,1时,应估计p=1/4;而当X=2,3时,应估计p=3/4.,极大似然估计法的思想: 设总体X的密度函数为f(x,),为未知参数,则 样本(X1,X2,Xn)的联合密度函数为,令,参数的估计量 ,使得样本(X1,X2,Xn)落在观测 值 的邻域内的概率L()达到最大,即,则称 为参数的极大似然估计值。,令,求极大似然估计的一般步骤归纳如下:,例:设随机变量X服从泊松分布:,其中0是一未知参数,求的极大似然估计.,解 设(x1,x2,xn)是样本 (X1,X2,Xn)的一组观测值.于是似然函数,两边取对数得,从而得出的极大似然估计量为,解这一方程得,解,总体X服从参数为的指数分布,则有,所以似然函数为,取对数,令,解得的极大似然估计值为,极大似然估计量为,例:设(X1,X2,Xn)是来自正态总体N(,2)的一个样本,其中,2是未知参数,参数空间=-0.求与2的极大似然估计.,解 正态分布的似 然函数为,两边取对数得,由微积分知识易验证以上所求为与2的极大似然估计.,分别求关于与2的偏导数,得似然方程组,解这一方程组得,例:设总体X具有均匀分布,其概率密度函数为,求未知参数的极大似然估计.,解 设 (X1,X2,Xn)是来自总体X的一个样本.似然函数为,要使L(; x1,x2,xn)达到最大,就要使达到最小,由于,所以的极大似然估计值为:,参数的极大似然估计量为:,例 假设(X1,X2,Xn)是取自正态总体N(,2) 的样本,求和2的极大似然估计量。,解 构造似然函数,取对数,求偏导数,并令其为0,解得,所以,2的极大似然估计量为,与矩估计量 相同,例 设总体 X N (, 2), x1, x2, xn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年内蒙古自治区赤峰市红山区高一上学期期末统考历史试题(解析版)
- 2024-2025学年山东省东营市高一下学期期末质量监控历史试题(解析版)
- 2026年数据结构与算法实现模拟试题库
- 2026年旅游管理专业测试题目旅游规划与目的地营销
- 2026年13叙述文学基础题目选粹与解答
- 2026年音乐基础理论乐理和声与作曲知识问答
- 2026年物流管理与供应链优化初级练习题
- 2026年生物医学专业资料分析模拟试题集
- 2026年审计专业硕士研究生入学考试预测模拟题及答案解析
- 2026年国际贸易从业人员诚信经营与合规测试题
- 美国变压器市场深度报告
- 建设工程第三方质量安全巡查标准
- 乳化液处理操作规程
- 饭店转让协议合同
- 营建的文明:中国传统文化与传统建筑(修订版)
- 用流程复制培训课件
- 液化天然气气化站安全检查表
- 2023年白银有色集团招聘笔试题库及答案解析
- GB/T 32022-2015贵金属覆盖层饰品
- GB/T 26253-2010塑料薄膜和薄片水蒸气透过率的测定红外检测器法
- GB/T 1185-2006光学零件表面疵病
评论
0/150
提交评论