已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2.5几个常用的分布,回顾复习,如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,1. 随机变量,对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量,2.离散型随机变量,3、离散型随机变量的分布列的性质:,解:根据分布列的性质,针尖向下的概率是(1p),于是,随机变量X的分布列是:,1、两点分布列,象上面这样的分布列称为两点分布列。如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为成功概率。,练习:,1、在射击的随机试验中,令X= 如 果射中的概率为0.8,求随机变量X的分布列。,0,射中, 1,未射中,2、设某项试验的成功率是失败率的2倍,用随机变量 去描述1次试验的成功次数,则失败率p等于( ) A.0 B. C. D.,C,基本概念,独立重复试验的特点: 1)每次试验只有两种结果,要么发生,要么不发生; 2)任何一次试验中,A事件发生的概率相同,即相互独立,互不影响试验的结果。,探究,投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?,连续掷一枚图钉3次,就是做3次独立重复试验。用 表示第i次掷得针尖向上的事件,用 表示“仅出现一次针尖向上”的事件,则,由于事件 彼此互斥,由概率加法公式得,所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是,思考?,上面我们利用掷1次图钉,针尖向上的概率为p,求出了连续掷3次图钉,仅出现次1针尖向上的概率。类似地,连续掷3次图钉,出现 次针尖向上的概率是多少?你能发现其中的规律吗?,仔细观察上述等式,可以发现,基本概念,2、二项分布:,一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为,此时称随机变量X服从二项分布,记作XB(n,p),并称p为成功概率。,注: 展开式中的第 项.,运用n次独立重复试验模型解题,例1某射手每次射击击中目标的概率是0.8. 求这名射 手在10次射击中。 (1)恰有8次击中目标的概率; (2)至少有8次击中目标的概率。 (结果保留两个有效数字),例2 实力相等的甲、乙两队参加乒乓球团体比 赛,规定5局3胜制(即5局内谁先赢3局就算胜 出并停止比赛) 试求甲打完5局才能取胜的概率 按比赛规则甲获胜的概率,运用n次独立重复试验模型解题,例3:在含有5件次品的100件产品中,任取3件,试求: (1)取到的次品数X的分布列; (2)至少取到1件次品的概率.,解:(1)从100件产品中任取3件结果数为,从100件产品中任取3件,其中恰有K件次品的结果为,那么从100件产品中任取3件, 其中恰好有K件次品的概率为,一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件产品数,则事件X=k发生的概率为,3、超几何分布,称分布列为超几何分布,练习,从110这10个数字中随机取出5个数字,令 X:取出的5个数字中的最大值试求X的分布列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏南通苏锡通融媒科技有限公司招聘拟录用笔试历年备考题库附带答案详解试卷3套
- 2025山东黄金集团夏季校园招聘668人笔试历年典型考点题库附带答案详解试卷3套
- 2025安徽路桥集团校园招聘160人笔试历年备考题库附带答案详解试卷3套
- 甘肃林业厅公务员考试试题及答案
- 2025中国建筑一局(集团)有限公司俄罗斯公司副总经理(商务法务)招聘笔试历年备考题库附带答案详解试卷3套
- 城市公路工程建设工程方案
- 浮山区公务员考试试题及答案
- 高效热交换器系统建设方案
- 城市更新建设项目环境影响报告书
- 东方威尼斯公务员考试试题及答案
- 2025年粉尘涉爆培训题库及答案
- 厨房消防安全培训课件
- 丙型肝炎防治指南
- 2025中国农业科学院第三批统一招聘2人笔试考试备考题库及答案解析
- 2025年基层党支部书记述职报告
- 中国稀土镁合金治炼项目投资可行性研究报告
- GB/T 30340-2025机动车驾驶员培训机构业务条件
- 传统文化经典教案范例分享
- 2025艺术品买卖合同范本
- 新保密教育线上培训考试试题及答案
- 2025年幼师考编真题及答案
评论
0/150
提交评论