




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,一、连续函数的运算法则,第九节,二、初等函数的连续性,连续函数的运算与,初等函数的连续性,第一章,在其定义域内连续,一、连续函数的运算法则,定理1. 在某点连续的有限个函数经有限次和 , 差 , 积 ,( 利用极限的四则运算法则证明),商(分母不为 0) 运算,结果仍是一个在该点连续的函数 .,例如,定理2 严格单调的连续函数必有严格单调的连续反函数。,例如,反三角函数在其定义域内皆连续.,在,上连续,其反函数,在,上也连续单调递增.,又如,单调 递增,定理3,意义,1.极限符号可以与函数符号互换;,例1,解,求,解:,原式,例2. 求,解:,原式,说明: 若,则有,定理4,例如,二、初等函数的连续性,三角函数及反三角函数在它们的定义域内是连续的.,基本初等函数在定义区间内连续,连续函数经四则运算仍连续,连续函数的复合函数连续,一切初等函数在定义区间内连续,例如,的连续区间为,(端点为单侧连续),的连续区间为,的定义域为,因此它无连续点,而,例3. 设,解:,讨论复合函数,的连续性 .,故此时连续;,而,故,x = 1为第一类间断点 .,在点 x = 1 不连续 ,三、如何找间断点?,(1)初等函数:求定义域,各子区间的边界点,(2)分段函数:讨论分段点,(1) (x)在x0 是否处有定义?,逐步研究:,注意: 1、初等函数在其定义区间内连续; 2、分段函数在其定义域内不一定连续。,是可去间断点,是无穷远间断点,是可去间断点,一、最值定理,二、介值定理,闭区间上连续函数的性质,注意: 若函数在开区间上连续,结论不一定成立 .,一、最值定理,定理1.在闭区间上连续的函数,即: 设,则,使,值和最小值.,或在闭区间内有间断,在该区间上一定有最大,点 ,例如,无最大值和最小值,也无最大值和最小值,又如,二、介值定理,由定理 1 可知有,证: 设,上有界 .,定理2. ( 零点定理 ),至少有一点,且,使,推论 在闭区间上连续的函数在该区间上有界.,定理3. ( 介值定理 ),设,且,则对 A 与 B 之间的任一数 C ,一点,证: 作辅助函数,则,且,故由零点定理知, 至少有一点,使,即,推论: 在闭区间上的连续函数,使,至少有,必取得介于最小值与,最大值之间的任何值 .,例1. 证明方程,一个根 .,证: 显然,又,故据零点定理, 至少存在一点,使,即,说明:,内必有方程的根 ;,取,的中点,内必有方程的根 ;,可用此法求近似根.,二分法,在区间,内至少有,则,则,内容小结,例2,证,由零点定理,内容小结,基本初等函数在定义区间内连续,连续函数的四则运算结果仍连续,连续函数的反函数连续,连续函数的复合函数连续,初等函数在定义区间内连续,说明: 分段函数在界点处是否连续需讨论其 左、右连续性.,内容小结,在,上达到最大值与最小值;,上可取最大与最小值之间的任何值;,4. 当,时,使,必存在,上有界;,在,在,证明至少存在,使,提示: 令,则,易证,1. 设,一点,习题课,思考与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 境外投资管理办法新
- 处方管理办法常用量
- 双城区拆迁管理办法
- 南宁诚信卡管理办法
- 机运队管理办法细则
- 国企保证金管理办法
- 时间投资与管理办法
- 某公司报价管理办法
- 完善津补贴管理办法
- 注册消防师管理办法
- 全渠道电商平台业务中台解决方案
- (高清版)DB36∕T 1324-2020 公路建设项目档案管理规范
- 深基坑开挖专项安全监理实施细则方案(2篇)
- 2025年八省联考新高考 语文试卷
- 对赌融资协议书范文范本
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 《进一步规范管理燃煤自备电厂工作方案》发改体改〔2021〕1624号
- 中等职业技术学校人工智能技术应用专业(三年制)人才培养方案
- 箱式变电站技术规范书
- 高考数学专项练习极值点偏移问题
- Q-GDW 12105-2021电力物联网数据中台服务接口规范
评论
0/150
提交评论