全国高考数学二轮复习专题二数列第1讲等差数列与等比数列学案文.doc_第1页
全国高考数学二轮复习专题二数列第1讲等差数列与等比数列学案文.doc_第2页
全国高考数学二轮复习专题二数列第1讲等差数列与等比数列学案文.doc_第3页
全国高考数学二轮复习专题二数列第1讲等差数列与等比数列学案文.doc_第4页
全国高考数学二轮复习专题二数列第1讲等差数列与等比数列学案文.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1讲等差数列与等比数列考情考向分析1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力热点一等差数列、等比数列的运算1通项公式等差数列:ana1(n1)d;等比数列:ana1qn1.2求和公式等差数列:Snna1d;等比数列:Sn(q1)3性质若mnpq,在等差数列中amanapaq;在等比数列中amanapaq.例1(1)(2018北京)设an是等差数列,且a13,a2a536,则an的通项公式为_答案an6n3(nN*)解析方法一设公差为d.a2a536,(a1d)(a14d)36,2a15d36.a13,d6,通项公式ana1(n1)d6n3(nN*)方法二设公差为d,a2a5a1a636,a13,a633,d6.a13,通项公式an6n3(nN*)(2)(2018华大新高考联盟质检)设等比数列an的前n项和为Sn,若a3a112a,且S4S12S8,则_.答案解析a3a112a,a2a,q42,S4S12S8,1q41q12(1q8),将q42代入计算可得.思维升华在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量跟踪演练1(1)设公比为q(q0)的等比数列an的前n项和为Sn,若S23a22,S43a42,则a1等于()A2 B1 C. D.答案B解析S4S2a3a43a43a2,即3a2a32a40,即3a2a2q2a2q20,即2q2q30,解得q1(舍)或q,当q时,代入S23a22,得a1a1q3a1q2,解得a11.(2)(2018全国)等比数列an中,a11,a54a3.求an的通项公式;记Sn为an的前n项和,若Sm63,求m.解设an的公比为q,由题设得anqn1.由已知得q44q2,解得q0(舍去),q2或q2.故an(2)n1或an2n1(nN*)若an(2)n1,则Sn.由Sm63得(2)m188,此方程没有正整数解若an2n1,则Sn2n1.由Sm63得2m64,解得m6.综上,m6.热点二等差数列、等比数列的判定与证明证明数列an是等差数列或等比数列的证明方法(1)证明数列an是等差数列的两种基本方法:利用定义,证明an1an(nN*)为一常数;利用等差中项,即证明2anan1an1(n2,nN*)(2)证明数列an是等比数列的两种基本方法:利用定义,证明(nN*)为一常数;利用等比中项,即证明aan1an1(n2,nN*)例2已知数列an,bn,其中a13,b11,且满足an(3an1bn1),bn(an13bn1),nN*,n2.(1)求证:数列anbn为等比数列;(2)求数列的前n项和Tn.(1)证明anbn(3an1bn1)(an13bn1)2(an1bn1),又a1b13(1)4,所以anbn是首项为4,公比为2的等比数列(2)解由(1)知,anbn2n1,又anbn(3an1bn1)(an13bn1)an1bn1,又a1b13(1)2,所以anbn为常数数列,anbn2,联立得,an2n1,所以Tn(nN*)思维升华(1)判断一个数列是等差(比)数列,也可以利用通项公式及前n项和公式,但不能作为证明方法(2)aan1an1(n2)是数列an为等比数列的必要不充分条件,判断时还要看各项是否为零跟踪演练2(2018新余模拟)已知an是各项都为正数的数列,其前n项和为Sn,且Sn为an与的等差中项(1)求证:数列S为等差数列;(2)求数列an的通项公式;(3)设bn,求bn的前n项和Tn.(1)证明由题意知2Snan,即2Snana1,(*)当n2时,有anSnSn1,代入(*)式得2Sn(SnSn1)(SnSn1)21,整理得SS1(n2)又当n1时,由(*)式可得a1S11,数列S是首项为1,公差为1的等差数列(2)解由(1)可得S1n1n,数列an的各项都为正数,Sn,当n2时,anSnSn1,又a1S11满足上式,an(nN*)(3)解由(2)得bn(1)n(),当n为奇数时,Tn1(1)()()(),当n为偶数时,Tn1(1)()()(),数列bn的前n项和Tn(1)n(nN*)热点三等差数列、等比数列的综合问题解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解例3已知等差数列an的公差为1,且a2a7a126.(1)求数列an的通项公式an与其前n项和Sn;(2)将数列an的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列bn的前3项,记bn的前n项和为Tn,若存在mN*,使得对任意nN*,总有SnTm恒成立,求实数的取值范围解(1)由a2a7a126,得a72,a14,an5n,从而Sn(nN*)(2)由题意知b14,b22,b31,设等比数列bn的公比为q,则q,Tm8,m随m的增加而减少,Tm为递增数列,得4Tm8.又Sn(n29n),故(Sn)maxS4S510,若存在mN*,使得对任意nN*,总有SnTm,则102.即实数的取值范围为(2,)思维升华(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便(2)数列的项或前n项和可以看作关于n的函数,然后利用函数的性质求解数列问题(3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解跟踪演练3已知数列an的前n项和为Sn,且Sn13(an1),nN*.(1)求数列an的通项公式;(2)设数列bn满足an1,若bnt对于任意正整数n都成立,求实数t的取值范围解(1)由已知得Sn3an2,令n1,得a11,又an1Sn1Sn3an13an,得an1an,所以数列an是以1为首项,为公比的等比数列,所以ann1(nN*)(2)由an1,得bnn1nn1,所以bn1bn(n1)nnn1(2n),所以(bn)maxb2b3,所以t.即t的取值范围为.真题体验1(2017全国改编)记Sn为等差数列an的前n项和若a4a524,S648,则an的公差为_答案4解析设an的公差为d,由得解得d4.2(2017浙江改编)已知等差数列an的公差为d,前n项和为Sn,则“d0”是“S4S62S5”的_条件答案充要解析方法一数列an是公差为d的等差数列,S44a16d,S55a110d,S66a115d,S4S610a121d,2S510a120d.若d0,则21d20d,10a121d10a120d,即S4S62S5.若S4S62S5,则10a121d10a120d,即21d20d,d0.“d0”是“S4S62S5”的充要条件方法二S4S62S5S4S4a5a62(S4a5)a6a5a5da5d0.“d0”是“S4S62S5”的充要条件3(2017北京)若等差数列an和等比数列bn满足a1b11,a4b48,则_.答案1解析设等差数列an的公差为d,等比数列bn的公比为q,则由a4a13d,得d3,由b4b1q3,得q38,q2.1.4(2017江苏)等比数列an的各项均为实数,其前n项和为Sn,已知S3,S6,则a8_.答案32解析设an的首项为a1,公比为q,则解得所以a8272532.押题预测1设等差数列an的前n项和为Sn,且a10,a3a100,a6a70的最大自然数n的值为()A6 B7 C12 D13押题依据等差数列的性质和前n项和是数列最基本的知识点,也是高考的热点,可以考查学生灵活变换的能力答案C解析a10,a6a70,a70,a1a132a70,S130的最大自然数n的值为12.2在等比数列an中,a33a22,且5a4为12a3和2a5的等差中项,则an的公比等于()A3 B2或3C2 D6押题依据等差数列、等比数列的综合问题可反映知识运用的综合性和灵活性,是高考出题的重点答案C解析设公比为q,5a4为12a3和2a5的等差中项,可得10a412a32a5,10a3q12a32a3q2,得10q122q2,解得q2或3.又a33a22,所以a2q3a22,即a2(q3)2,所以q2.3已知各项都为正数的等比数列an满足a7a62a5,存在两项am,an使得 4a1,则的最小值为()A. B.C. D.押题依据本题在数列、方程、不等式的交汇处命题,综合考查学生应用数学的能力,是高考命题的方向答案A解析由a7a62a5,得a1q6a1q52a1q4,整理得q2q20,解得q2或q1(不合题意,舍去),又由4a1,得aman16a,即a2mn216a,即有mn24,亦即mn6,那么(mn),当且仅当,即n2m4时取等号4定义在(,0)(0,)上的函数f(x),如果对于任意给定的等比数列an,f(an)仍是等比数列,则称f(x)为“保等比数列函数”现有定义在(,0)(0,)上的如下函数:f(x)x2;f(x)2x;f(x);f(x)ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A B C D押题依据先定义一个新数列,然后要求根据定义的条件推断这个新数列的一些性质或者判断一个数列是否属于这类数列的问题是近年来高考中逐渐兴起的一类问题,这类问题一般形式新颖,难度不大,常给人耳目一新的感觉答案C解析由等比数列的性质得,anan2a.f(an)f(an2)aa(a)2f(an1)2;f(an)f(an2)f(an1)2;f(an)f(an2)f(an1)2;f(an)f(an2)ln|an|ln|an2|(ln|an1|)2f(an1)2.A组专题通关1(2018大庆质检)已知等差数列an中,a49,S424,则a7等于()A3 B7 C13 D15答案D解析由于数列为等差数列,依题意得解得d2,所以a7a43d9615.2(2018淮北模拟)已知等比数列an中,a52,a6a88,则等于()A2 B4 C6 D8答案A解析数列an是等比数列,a6a8a8,a72(与a5同号),q2,从而q4()22.3(2018株洲质检)已知等差数列an的公差为2,若a1,a3,a4成等比数列,Sn是an的前n项和,则S9等于()A8 B6 C0 D10答案C解析a1,a3,a4成等比数列,aa1a4,(a122)2a1(a132),化为2a116,解得a18,则S98920.4一个等比数列的前三项的积为2,最后三项的积为4,且所有项的积为64,则该数列的项数是()A13 B12C11 D10答案B解析设等比数列为an,其前n项积为Tn,由已知得a1a2a32,anan1an24,可得(a1an)324,a1an2,Tna1a2an,T(a1a2an)2(a1an)(a2an1)(ana1)(a1an)n2n642212,n12.5(2018荆州质检)已知数列an满足525,且a2a4a69,则(a5a7a9)等于()A3 B3 C D.答案A解析25,an1an2,数列an是等差数列,且公差为2.a2a4a69,3a49,a43.log(a5a7a9)log3a7log3(a46)log273.6(2018资阳模拟)已知等差数列an的前n项和为Sn,a19,a51,则使得Sn0成立的最大的自然数n为_答案9解析因为a19,a51,所以d2,所以Sn9nn(n1)(2)0,即n0成立的最大的自然数n为9.7(2018石嘴山模拟)在正项等比数列an中,若a1,a3,2a2成等差数列,则_.答案32解析由于a1,a3,2a2成等差数列,所以a3a12a2,即a1q2a12a1q,q22q10,解得q1或q1(舍去)故q232.8已知数列an满足a12,且an(n2,nN*),则an_.答案解析由an,得,于是1(n2,nN*)又1,数列是以为首项,为公比的等比数列,故1,an(nN*)9意大利数学家列昂那多斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,即F(1)F(2)1,F(n)F(n1)F(n2)(n3,nN*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列,则b2 017_.答案1解析由题意得引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,此数列被3 整除后的余数构成一个新数列为1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,构成以8项为周期的周期数列,所以b2 017b11.10(2018天津)设an是等差数列,其前n项和为Sn(nN*);bn是等比数列,公比大于0,其前n项和为Tn(nN*),已知b11,b3b22,b4a3a5,b5a42a6.(1)求Sn和Tn;(2)若Sn(T1T2Tn)an4bn,求正整数n的值解(1)设等比数列bn的公比为q(q0)由b11,b3b22,可得q2q20.因为q0,可得q2,故bn2n1.所以Tn2n1(nN*)设等差数列an的公差为d.由b4a3a5,可得a13d4.由b5a42a6,可得3a113d16,从而a11,d1,故ann,所以Sn(nN*)(2)由(1),有T1T2Tn(21222n)nn2n1n2.由Sn(T1T2Tn)an4bn,可得2n1n2n2n1,整理得n23n40,解得n1(舍去)或n4.所以n的值为4.B组能力提高11数列an是以a为首项,b为公比的等比数列,数列bn满足bn1a1a2an(n1,2,),数列满足cn2b1b2bn(n1,2,),若为等比数列,则ab等于()A. B3 C. D6答案B解析由题意知,当b1时,cn不是等比数列,所以b1.由anabn1,得bn11,则cn2n2n,要使为等比数列,必有得ab3.12艾萨克牛顿(1643年1月4日1727年3月31日)是英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数f(x)的零点时给出一个数列满足xn1xn,我们把该数列称为牛顿数列如果函数f(x)ax2bxc(a0)有两个零点1,2,数列为牛顿数列,设anln ,已知a12,xn2,则an的通项公式an_.答案2n解析 函数f(x)ax2bxc(a0)有两个零点1,2, 解得 f(x)ax23ax2a,则f(x)2ax3a.则xn1xnxn,2,则数列an是以2为公比的等比数列,又a12,数列an是以2为首项,以2为公比的等比数列,则an22n12n.13(2018攀枝花统考)记m,若是等差数列,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论