紫外吸收光谱分析教学.ppt_第1页
紫外吸收光谱分析教学.ppt_第2页
紫外吸收光谱分析教学.ppt_第3页
紫外吸收光谱分析教学.ppt_第4页
紫外吸收光谱分析教学.ppt_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章 紫外吸收光谱分析,UV-Visible Spectrometry,10-1 基本原理 10-1-1 紫外可见吸收光谱的产生,1. 概述 紫外吸收光谱:分子价电子能级跃迁。 波长范围:100-800 nm. (1) 远紫外光区: 100-200nm (2) 近紫外光区: 200-400nm (3)可见光区:400-800nm,可用于结构鉴定和定量分析。 电子跃迁的同时,伴随着振动转动能级的跃迁;带状光谱。,2. 物质对光的选择性吸收及吸收曲线,M + 热,M + 荧光或磷光,E = E2 - E1 = h 量子化 ;选择性吸收; 分子结构的复杂性使其对不同波长光的吸收程度不同; 用不同波长的单色光照射,测吸光度 吸收曲线与最大吸收波长 max;,M + h M *,光的互补:蓝 黄,基态 激发态 E1 (E) E2,(1)同一种物质对不同波长光的吸光度不同。吸光度最大处对应的波长称为最大吸收波长max (2)不同浓度的同一种物质,其吸收曲线形状相似max不变。而对于不同物质,它们的吸收曲线形状和max则不同。 (3)吸收曲线可以提供物质的结构信息,并作为物质定性分析的依据之一。也是定量分析中选择入射光波长的重要依据。 (4)不同浓度的同一种物质,在某一定波长下吸光度 A 有差异在max处吸光度A 的差异最大所以测定最灵敏。此特性可作为物质定量分析的依据。,3.紫外可见分子吸收光谱与电子跃迁,物质分子内部三种运动形式: (1)电子相对于原子核的运动 (2)原子核在其平衡位置附近的相对振动 (3)分子本身绕其重心的转动 分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量 分子的内能:电子能量Ee 、振动能量Ev 、转动能量Er 即 EEe+Ev+Er evr,能级跃迁,紫外-可见光谱属于电子跃迁光谱。 电子能级间跃迁的同时总伴随有振动和转动能级间的跃迁。即电子光谱中总包含有振动能级和转动能级间跃迁产生的若干谱线而呈现宽谱带。,(1)转动能级间的能量差Er:0.0050.050eV,跃迁产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; (2)振动能级的能量差Ev约为:0.05eV,跃迁产生的吸收光谱位于红外区,红外光谱或分子振动光谱; (3)电子能级的能量差Ee较大120eV。电子跃迁产生的吸收光谱在紫外可见光区,紫外可见光谱或分子的电子光谱,(4)吸收光谱的波长分布是由产生谱带的跃迁能级间的能量差所决定,反映了分子内部能级分布状况,是物质定性的依据。,(5)吸收谱带强度与分子偶极矩变化、跃迁几率有关,也提供分子结构的信息。通常将在最大吸收波长处测得的摩尔吸光系数max也作为定性的依据。不同物质的max有时可能相同,但max不一定相同; (6)吸收谱带强度与该物质分子吸收的光子数成正比,定量分析的依据。,10-1-2 有机物吸收光谱与电子跃迁,1紫外可见吸收光谱 有机化合物的紫外可见吸收光谱是三种电子跃迁的结果:电子、电子、n电子。,分子轨道理论:成键轨道反键轨道。,当外层电子吸收紫外或可见辐射后,就从基态向激发态(反键轨道)跃迁。主要有四种跃迁所需能量大小顺序为:n n ,生色团与助色团,生色团: 最有用的紫外可见光谱是由和n跃迁产生的。这两种跃迁均要求有机物分子中含有不饱和基团。这类含有键的不饱和基团称为生色团。简单的生色团由双键或叁键体系组成,如乙烯基、羰基、亚硝基、偶氮基NN、乙炔基、腈基CN等。 助色团: 有一些含有n电子的基团(如OH、OR、NH、NHR、X等),它们本身没有生色功能(不能吸收200nm的光),但当它们与生色团相连时,就会发生n共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。,红移与蓝移,有机化合物的吸收谱带常常因引入取代基或改变溶剂使最大吸收波长max和吸收强度发生变化: max向长波方向移动称为红移,向短波方向移动称为蓝移 (或紫移)。吸收强度即摩尔吸光系数增大或减小的现象分别称为增色效应或减色效应,如图所示。,2. 跃迁,所需能量最大;电子只有吸收远紫外光的能量才能发生跃迁; 饱和烷烃的分子吸收光谱出现在远紫外区; 吸收波长200 nm; 例:甲烷的max为125nm , 乙烷max为135nm。 只能被真空紫外分光光度计检测到; 作为溶剂使用;,3. n跃迁,所需能量较大。 吸收波长为150250nm,大部分在远紫外区,近紫外区仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原子)均呈现n* 跃迁。,4. * 跃迁,所需能量较小,吸收波长处于远紫外区的近紫外端或近紫外区,max一般在104Lmol1cm1以上,属于强吸收。 (1) 不饱和烃*跃迁 乙烯*跃迁的max为162nm,max为: 1104 Lmol-1cm1。 K带共轭非封闭体系的p p* 跃迁,C=C 发色基团, 但 *200nm。,max=162nm 助色基团取代 (K带)发生红移。,基-是由非环或六环共轭二烯母体决定的基准值; 无环、非稠环二烯母体: max=217 nm,(2)共轭烯烃中的 *,异环(稠环)二烯母体: max=214 nm 同环(非稠环或稠环)二烯母体: max=253 nm niI : 由双键上取代基种类和个数决定的校正项,(1)每增加一个共轭双键 +30 (2)环外双键 +5 (3)双键上取代基:,酰基(-OCOR) 0 卤素(-Cl,-Br) +5 烷基(-R) +5 烷氧基(-OR) +6,(3) 羰基化合物共轭烯烃中的 *, Y=H,R n * 180-190nm * 150-160nm n * 275-295nm Y= -NH2,-OH,-OR 等助色基团,K 带红移,R 带兰移; R带max =205nm ;10-100,不饱和醛酮 K带红移:165250nm R 带兰移:290310nm,(4) 芳香烃及其杂环化合物,苯: E1带180184nm; =47000 E2带200204 nm =7000 苯环上三个共扼双键的 *跃迁特征吸收带; B带230-270 nm =200 *与苯环振动引起; 含取代基时, B带简化,红移。,乙酰苯紫外光谱图,羰基双键与苯环共扼: K带强;苯的E2带与K带合并,红移; 取代基使B带简化; 氧上的孤对电子: R带,跃迁禁阻,弱;,苯环上助色基团对吸收带的影响,苯环上发色基团对吸收带的影响,5. 立体结构和互变结构的影响,顺反异构:,顺式:max=280nm; max=10500 反式:max=295.5 nm;max=29000,互变异构:,酮式:max=204 nm 烯醇式:max=243 nm,6. 溶剂的影响,n *跃迁:兰移; ;, *跃迁:红移; ;,非极性 极性 n *跃迁:兰移; ; *跃迁:红移; ;,极性溶剂使精细结构消失;,10-1-3 金属配合物的紫外可见吸收光谱,金属离子与配位体反应生成配合物的颜色一般不同于游离金属离子(水合离子)和配位体本身的颜色。金属配合物的生色机理主要有三种类型: 配位体微扰的金属离子d一d电子跃迁和一电子跃迁 摩尔吸收系数很小,对定量分析意义不大。 金属离子微扰的配位体内电子跃迁 金属离子的微扰,将引起配位体吸收波长和强度的变化。变化与成键性质有关,若静电引力结合,变化一般很小。若共价键和配位键结合,则变化非常明显。 电荷转移吸收光谱 在分光光度法中具有重要意义。,电荷转移吸收光谱,当吸收紫外可见辐射后,分子中原定域在金属M轨道上电荷的转移到配位体L的轨道,或按相反方向转移,这种跃迁称为电荷转移跃迁,所产生的吸收光谱称为荷移光谱。 电荷转移跃迁本质上属于分子内氧化还原反应,因此呈现荷移光谱的必要条件是构成分子的二组分,一个为电子给予体,另一个应为电子接受体。 电荷转移跃迁在跃迁选律上属于允许跃迁,其摩尔吸光系数一般都较大(10 4左右),适宜于微量金属的检出和测定。 电荷转移跃迁在紫外区或可见光呈现荷移光谱,荷移光谱的最大吸收波长及吸收强度与电荷转移的难易程度有关。 例:Fe3与SCN形成血红色配合物,在490nm处有强吸收峰。其实质是发生了如下反应: Fe3 SCN hv= Fe SCN 2,10-1-4 光的吸收定律,1. 朗伯比耳定律 布格(Bouguer)和朗伯(Lambert)先后于1729年和1760年阐明了光的吸收程度和吸收层厚度的关系。Ab 1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之间也具有类似的关系。A c 二者的结合称为朗伯比耳定律,其数学表达式为:,A = lg(I0/It) = bc A:吸光度;溶液对光的吸收程度; b:液层厚度(光程长度),cm; c:溶液的摩尔浓度,molL-; :摩尔吸光系数,Lmol-cm-;,或:A = lg(I0/It) = abc c:溶液的浓度,gL- a:吸光系数,Lg-cm-1,透光度(透光率)T,透过度T : 描述入射光透过溶液的程度: T = I t / I0 吸光度A与透光度T 的关系: A lg T,朗伯比耳定律是吸光光度法的理论基础和定量测定的依据。应用于各种光度法的吸收测量; 摩尔吸光系数在数值上等于浓度为1 mol/L、液层厚度为1cm时该溶液在某一波长下的吸光度; 吸光系数a(Lg-1cm-1)相当于浓度为1 g/L、液层厚度为1cm时该溶液在某一波长下的吸光度。,2. 摩尔吸光系数的讨论,(1)吸收物质在一定波长和溶剂条件下的特征常数; (2)不随浓度c和光程长度b的改变而改变。在温度和波长等条件一定时,仅与吸收物质本身的性质有关,与待测物浓度无关; (3)可作为定性鉴定的参数; (4)同一吸收物质在不同波长下的值是不同的。在最大吸收波长max处的摩尔吸光系数,常以max表示。max表明了该吸收物质最大限度的吸光能力,也反映了光度法测定该物质可能达到的最大灵敏度。,(5)max越大表明该物质的吸光能力越强,用光度法测定该物质的灵敏度越高。105:超高灵敏; =(610)104 :高灵敏;2104 :不灵敏。 (6)在数值上等于浓度为1mol/L、液层厚度为1cm时该溶液在某一波长下的吸光度。,(1)物理性因素,难以获得真正的纯单色光。 朗比耳定律的前提条件之一是入射光为单色光。 分光光度计只能获得近乎单色的狭窄光带。复合光可导致对朗伯比耳定律的正或负偏离。,非单色光、杂散光、非平行入射光都会引起对朗伯比耳定律的偏离,最主要的是非单色光作为入射光引起的偏离。,3. 偏离朗伯比耳定律的原因,标准曲线法测定未知溶液的浓度时,发现:标准曲线常发生弯曲(尤其当溶液浓度较高时),这种现象称为对朗伯比耳定律的偏离。引起偏离的因素:,非单色光作为入射光引起的偏离,假设由波长为1和2的两单色光 组成的入射光通过浓度为c的溶液,则: A 1lg(o1 /t1 )1bc A 2lg(o2 /t2 )2bc 故:,式中:o1、o2分别为1、2 的入射光强度; t1、t2分别为1、2 的透射光强度; 1、2分别为1、2的摩尔吸光系数; 因实际上只能测总吸光度A总,并不能分别测得A1和A2,故,A总 lg(o总/t总 ) lg(Io1+o2)/(t1+t2) lg(Io1+o2)/(o110-1bc +o210-2bc ) 令: 1-2 ; 设: o1 o2 A总 lg(2Io1)/t1(110 - bc ) A 1 + lg2 - lg(110 - bc ),讨论:,A总 =A1 + lg2 - lg(110bc ) (1) = 0; 即: 1= 2 = 则: A总 lg(o/t) bc (2) 0 若 0, lg(110 bc )值随c值增大而增大,则标准曲线偏离直线向c 轴弯曲,即负偏离;反之,则向A轴弯曲,即正偏离。,讨论: A总 =A1 + lg2 - lg(110bc ),(3) 很小时,即12: 可近似认为是单色光。在低浓度范围内,不发生偏离。若浓度较高,即使 很小, A总 1 ,且随着c值增大, A总 与A 1的差异愈大,在图上则表现为Ac曲线上部(高浓度区)弯曲愈严重。故朗伯比耳定律只适用于稀溶液。 (4) 为克服非单色光引起的偏离,首先应选择比较好的单色器。此外还应将入射波长选定在待测物质的最大吸收波长且吸收曲线较平坦处。,(2) 化学性因素,朗比耳定律的假定:所有的吸光质点之间不发生相互作用;假定只有在稀溶液(c10 2 mol/L 时,吸光质点间可能发生缔合等相互作用,直接影响了对光的吸收。 故:朗伯比耳定律只适用于稀溶液。 溶液中存在着离解、聚合、互变异构、配合物的形成等化学平衡时。使吸光质点的浓度发生变化,影响吸光度。 例: 铬酸盐或重铬酸盐溶液中存在下列平衡: CrO42- 2H = Cr2O72- H2O 溶液中CrO42-、 Cr2O72-的颜色不同,吸光性质也不相同。故此时溶液pH 对测定有重要影响。,10-2 紫外-可见分光光度计 10-2-1 基本组成,光源,单色器,样品室,检测器,显示,1. 光源 在整个紫外光区或可见光谱区可以发射连续光谱,具有足够的辐射强度、较好的稳定性、较长的使用寿命。,可见光区:钨灯作为光源,其辐射波长范围在3202500 nm。 紫外区:氢、氘灯。发射185400 nm的连续光谱。,2. 单色器,将光源发射的复合光分解成单色光并可从中选出一任波长单色光的光学系统。 入射狭缝:光源的光由此进入单色器; 准光装置:透镜或返射镜使入射光成为平行光束; 色散元件:将复合光分解成单色光;棱镜或光栅;,聚焦装置:透镜或凹面反射镜,将分光后所得单色光聚焦至出射狭缝; 出射狭缝。,3. 样品室,样品室放置各种类型的吸收池(比色皿)和相应的池架附件。吸收池主要有石英池和玻璃池两种。在紫外区须采用石英池,可见区一般用玻璃池。 4. 检测器 利用光电效应将透过吸收池的光信号变成可测的电信号,如:光电池、光电管、光电二极管或光电倍增管(目前常用)。,5. 结果显示记录系统 检流计、数字显示、微机进行仪器自动控制和结果处理,10-2-2 分光光度计的类型,1.单光束 简单,价廉,适于在给定波长处测量吸光度或透光度,一般不能作全波段光谱扫描,要求光源和检测器具有很高的稳定性。,2.双光束 自动记录,快速全波段扫描。可消除光源不稳定、检测器灵敏度变化等因素的影响,特别适合于结构分析。仪器复杂,价格较高。,3. 双波长,将不同波长的两束单色光(1、2) 快束交替通过同一吸收池而后到达检测器。产生交流信号。无需参比池。=12nm。两波长同时扫描即可获得导数光谱。,10-3 显色与测量条件的选择 10-3-1 显色反应的选择,1.选择显色反应时,应考虑的因素 灵敏度高、选择性高、生成物稳定、显色剂在测定波长处无明显吸收,两种有色物最大吸收波长之差:“对比度”,要求 60nm。 2.配位显色反应 当金属离子与有机显色剂形成配合物时,通常会发生电荷转移跃迁,产生很强的紫外可见吸收光谱。 3. 氧化还原显色反应 某些元素的氧化态,如Mn()、Cr()在紫外或可见光区能强烈吸收,可利用氧化还原反应对待测离子进行显色后测定。例如:钢中微量锰的测定,是将Mn2 氧化成紫红色的MnO4-后,在525 nm处进行测定。,4. 显色剂,无机显色剂:硫氰酸盐、钼酸铵、过氧化氢等几种。 有机显色剂:种类繁多 偶氮类显色剂:本身是有色物质,生成配合物后,颜色发生明显变化;具有性质稳定、显色反应灵敏度高、选择性好、对比度大等优点,应用最广泛。偶氮胂、PAR等。 三苯甲烷类:铬天青S、二甲酚橙等,10-3-2 显色反应条件的选择,1.显色剂用量 吸光度A与显色剂用量CR的关系会出现如图所示的几种情况。选择曲线变化平坦处。,2.反应体系的酸度 在相同实验条件下,分别测定不同pH值条件下显色溶液的吸光度。选择曲线中吸光度较大且恒定的平坦区所对应的pH范围。 3.显色时间与温度 实验确定 4.溶剂 一般尽量采用水相测定,10-3-3 共存离子干扰的消除,1.加入掩蔽剂 选择掩蔽剂的原则是:掩蔽剂不与待测组分反应;掩蔽剂本身及掩蔽剂与干扰组分的反应产物不干扰待测组分的测定。 例:测定Ti4,可加入H3PO4掩蔽剂使Fe3+(黄色)成为Fe(PO)23-(无色),消除Fe3+的干扰;又如用铬天菁S光度法测定Al3+时,加入抗坏血酸作掩蔽剂将Fe3+还原为Fe2+,消除Fe3+的干扰。 2. 选择适当的显色反应条件 3. 分离干扰离子,10-3-4 测定条件的选择,1.选择适当的入射波长 一般应该选择max为入射光波长。 如果max处有共存组分干扰时,则应考虑选择灵敏度稍低但能避免干扰的入射光波长。,2. 选择合适的参比溶液,为什么需要使用参比溶液? 测得的的吸光度真正反映待测溶液吸光强度。 参比溶液的选择一般遵循以下原则: (1)若仅待测组分与显色剂反应产物在测定波长处有吸收,其它所加试剂均无吸收,用纯溶剂(水)作参比溶液; (2)若显色剂或其它所加试剂在测定波长处略有吸收,而试液本身无吸收,用“试剂空白”(不加试样溶液)作参比溶液; (3)若待测试液在测定波长处有吸收,而显色剂等无吸收,则可用“试样空白”(不加显色剂)作参比溶液; (4)若显色剂、试液中其它组分在测量波长处有吸收,则可在试液中加入适当掩蔽剂将待测组分掩蔽后再加显色剂,作为参比溶液。,3. 控制适宜的吸光度(读数范围),不同的透光度读数,产生的误差大小不同: lgT=bc 微分:dlgT0.434dlnT = - 0.434T -1 dT =b dc 两式相除得: dc/c = ( 0.434 / TlgT )dT 以有限值表示可得: c/c =(0.434/TlgT)T 浓度测量值的相对误差(c/c)不仅与仪器的透光度误差T 有关,而且与其透光度读数T 的值也有关。 是否存在最佳读数范围?何值时误差最小?,最佳读数范围与最佳值,设:T =1%,则可绘出溶液浓度相对误差c/c与其透光度T 的关系曲线。如图所示: 当:T =1%,T 在20%65%之间时,浓度相对误差较小,最佳读数范围。,可求出浓度相对误差最小时的透光度Tmin为: Tmin36.8%, Amin0.434,用仪器测定时应尽量使溶液透光度值在T %=2065% , 吸光度 A =0.700.20。,10-3-5 提高光度测定灵敏度和选择性的途径,1. 合成新的高灵敏度有机显色剂 2. 采用分离富集和测定相结合 3. 采用三元(多元)配合物显色体系 由一个中心金属离子与两种(或两种以上)不同配位体形成的配合物,称为三元(多元)配合物。 多元配合物显色反应具有很高的灵敏度,一方面是因为多元配合物比其相应的二元配合物分子截面积更大;另一方面是因为第二或第三配位体的引入,可能产生配位体之间、配位体与中心金属离子间的协同作用,使共轭电子的流动性和电子跃迁几率增大。三元配合物主要类型有:三元离子缔合物、三元混配配合物、三元胶束(增溶)配合物。,10-4 定性分析 10-4-1 定性方法 max:化合物特性参数,可作为定性依据; 有机化合物紫外吸收光谱:反映结构中生色团和助色团的特性,不完全反映分子特性; 计算吸收峰波长,确定共扼体系等 甲苯与乙苯:谱图基本相同; 结构确定的辅助工具; max , max都相同,可能是一个化合物; 标准谱图库:46000种化合物紫外光谱的标准谱图 The sadtler standard spectra ,Ultraviolet,10-4-2 有机化合物结构辅助解析,1. 可获得的结构信息 (1)200-400nm 无吸收峰。饱和化合物,单烯。 (2) 270-350 nm有吸收峰(=10-100)醛酮 n* 跃迁产生的R 带。 (3) 250-300 nm 有中等强度的吸收峰(=200-2000),芳环的特征 吸收(具有精细解构的B带)。 (4) 200-250 nm有强吸收峰(104),表明含有一个共轭体系(K)带。共轭二烯:K带(230 nm);不饱和醛酮:K带230 nm ,R带310-330 nm 260nm,300 nm,330 nm有强吸收峰,3,4,5个双键的共轭体系。,2. 光谱解析注意事项,(1) 确认max,并算出,初步估计属于何种吸收带; (2) 观察主要吸收带的范围,判断属于何种共轭体系; (3) 乙酰化位移,B带: 262 nm(302) 274 nm(2040) 261 nm(300),(4) pH值的影响 加NaOH红移酚类化合物,烯醇。 加HCl兰移苯胺类化合物。,3. 分子不饱和度的计算,定义: 不饱和度是指分子结构中达到饱和所缺一价元素的“对”数。 如:乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。 计算: 若分子中仅含一,二,三,四价元素(H,O,N,C),则可按下式进行不饱和度的计算: = (2 + 2n4 + n3 n1 )/ 2 n4 , n3 , n1 分别为分子中四价,三价,一价元素数目。 作用: 由分子的不饱和度可以推断分子中含有双键,三键,环,芳环的数目,验证谱图解析的正确性。 例: C9H8O2 = (2 +29 8 )/ 2 = 6,4. 解析示例,有一化合物C10H16由红外光谱证明有双键和异丙基存在,其紫外光谱 max=231 nm( 9000),此化合物加氢只能吸收2克分子H2,确定其结构。,解:计算不饱和度 = 3;两个双键;共轭?加一分子氢 max=231 nm, 可能的结构 计算 max, max: 232 273 268 268, max =非稠环二烯(a,b)+2 烷基取代+环外双键 =217+25+5=232(231),10-5 定量分析 10-5-1 普通分光光度法,1.单组分的测定 通常采用 A-C 标准曲线法定量测定。 2.多组分的同时测定 若各组分的吸收曲线互不重叠,则可在各自最大吸收波长处分别进行测定。这本质上与单组分测定没有区别。 若各组分的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论