jx0309-图书摆放机器人的结构设计(带cad和文档)
收藏
资源目录
压缩包内文档预览:
编号:20766904
类型:共享资源
大小:14.82MB
格式:ZIP
上传时间:2019-07-11
上传人:QQ24****1780
认证信息
个人认证
王**(实名认证)
浙江
IP属地:浙江
30
积分
- 关 键 词:
-
jx0309-图书摆放机器人的结构设计带cad和文档
- 资源描述:
-
jx0309-图书摆放机器人的结构设计(带cad和文档),jx0309-图书摆放机器人的结构设计带cad和文档
- 内容简介:
-
集成式6自由度微动并联机器人系统 第六图书馆 基于机构、驱动、检测一体化的思想,研制出了压电陶瓷驱动的6自由度集成式并联微动机器人,对该机器人的机构、驱动、 检测、控制及误差补偿方法进行了研究。采用6自由度(6-SPS)并联结构设计了微动并联机器人的构型,对结构参数进行了优 化,并进行了运动空间分析和刚度分析。基于模块化设计思想将压电陶瓷驱动电源、微位移传感器检测电路、中央控制器组 合在一起,通过自定义的内部总线相连构成了并联机器人的驱动和控制系统。最后,给出了该机器人位姿测量方法,并分别在 压电陶瓷的开环与闭环控制状态下进行位姿测量,进而实现误差补偿。实验结果表明:该并联微动机器人可实现10nm平动重复 定位精度;0.0001。转动重复定位精度;具有定位精度和可靠性高,使用灵活方便的特点,满足多自由度精密定位的要求。基于 机构、驱动、检测一体化的思想,研制出了压电陶瓷驱动的6自由度集成式并联微动机器人,对该机器人的机构、驱动、检测 、控制及误差补偿方法进行了研究。采用6自由度(6-SPS)并联结构设计了微动并联机器人的构型,对结构参数进行了优化,并 进行了运动空间分析和刚度分析。基于模块化设计思想将压电陶瓷驱动电源、微位移传感器检测电路、中央控制器组合在一 起,通过自定义的内部总线相连构成了并联机器人的驱动和控制系统。最后,给出了该机器人位姿测量方法,并分别在压电陶 瓷的开环与闭环控制状态下进行位姿测量,进而实现误差补偿。实验结果表明:该并联微动机器人可实现10nm平动重复定位精 度;0.0001。转动重复定位精度;具有定位精度和可靠性高,使用灵活方便的特点,满足多自由度精密定位的要求。并联微动机 器人 压电陶瓷 位姿测量 误差补偿光学精密工程王振华 陈立国 孙立宁哈尔滨工业大学机器入研究所,黑龙江哈 尔滨1500802007第六图书馆 第六图书馆 第 l5卷 第 9期 光学 精密工程 Vo115 No9 2007年 9月 OpticsandPrecisionEngineering Sep2007 文章编号 1004924X(2007)091391-07 集成式 6自由度微动并联机器人系统 王振华,陈立国,孙立宁 (哈尔滨工业大学机器入研究所,黑龙江 哈尔滨150080) 摘要 :基于机构、驱动、检测一体化的思想,研制 出了压 电陶瓷驱动的6自由度集成式并联微动机器人,对该机器人 的机 构、驱动、检测、控制及误差补偿方法进行 了研究。采用 6自由度 (6-SPS)并联结构设计 了微动并联机器人 的构型,对结 构参数进行了优化,并进行了运动空间分析和刚度分析 。基于模块化设计思想将压 电陶瓷驱动 电源 、微位移传感器检测 电路 、中央控制器组合在一起,通过 自定义的内部总线相连构成 了并联机器人 的驱动和控制系统 。最后,给 出了该机器 人位姿测量方法,并分别在压 电陶瓷的开环与 闭环控制状态下进行位姿测量,进而实现误差补偿 。实验结果表 明:该并 联微动机器人可实现 10nm平动重复定位精度;0000l。转动重复定位精度;具有定位精度和可靠性高,使用灵活方便的 特点,满足多 自由度精密定位 的要求 。 关 键 词 :并联微动机器人 ;压 电陶瓷 ;位姿测量 ;误差补偿 中图分类号 :TP2426 文献标识码 :A Integrated6-DOF parallelmicro-positioningrobot W ANG Zhen-hua,CHEN Liguo,SUN Lining 第六图书馆 (RoboticsInstitute,HarbinInstituteofTechnology,Harbin150080,China) Abstract:A piezoelectricelementdriven 6-DOF parallelmicropositioningrobotisdesignedbasedon integrationofmechanism ,driverandmeasurementBy-usingthe6-SPSmechanism todevelopthepar allelrobot,themechanicalparametersofthestructureareoptimized,andtheworkingspaceandstiff nessofthestructureareanalyzedThenthedriver,sensorandcontrollerareintegratedtogetherwith adefinedinternalbusbasedonthemodu1arizationFinally,theposesofaparallelrobotaremeasured bothinopen1oopandclose1oopcontro1conditions,andtheerrorcompensationisexecutedTheex perimenta1resultsindicatethatthe1inerprecisionandtherotationprecisionare10nm and0000 1。, respectively,whichshowsthattherobothashighpositioningprecisionandhighreliability,andcanbe usedexpedientlyforthehighintegrationstructure Keywords:paralle1microrobot;PZT;posemeasurement;errorcompensation 收稿 日期 :20070125:修订 日期 :20070301 基金项 目:国家 863高技术计划资助项 目(No2006AA04Z256) 光学 精密工程 第15卷 据压电陶瓷直线输 出位移的特点,本文采用标准 1 引 言 6-SPS结构形式,每个杆的两端是两个球铰 ,中间 是一个移动副。六路驱动杆采用压 电陶瓷作为驱 微动机器人具有高精度定位特性 ,是微操作 动器,同时作为支撑结构和位移传感器,实现了驱 系统不可或缺的组成部分 ,在精密工程 、生物工程 动 、机构 、检测一体化集成 。压 电陶瓷选择德 国 等多个领域得到广泛重视。随着微操作对象尺度 PI公司生产 的P84120型压 电陶瓷 。其行程为 的不断减小以及操作过程复杂度要求不断增加, 30 m(100V),内置电阻应变片式传感器,方便 多 自由度 、高精度、高集成度成为微动机器人发展 实现闭环控制,两端带有连接螺纹,其开环分辨率 的重要方向。 可达 到 03nm,刚 度 27Ntm,出力 达 到 单 自由度 、纳米级定位精度 的驱动和控制技 1000N 术已经得到了较为深入研究 ,而在多 自由度定位 方面,通常采用 串联式或积木式结构。随着 自由 度数 的增多 ,串联结构会产生误差积 累、精度下 降、系统刚度低、响应速度慢、承载能力下降等问 题 。针对这些问题 ,Ellis最早提出了一种压电陶 瓷驱动的并联微动结构_1;Hudgens采用六个旋 转输入实现 了六 自由度微动并联结构_2;Grace 研制了一种六 自由度并联微动操作手实现 了眼外 科手术作业_3;Wang研究了6自由度弹性铰链 并联微操作手的动力学和运动学模型 。与串联 和积木结构相比,并联机器人具有刚度大、承载能 第六图书馆 力强、误差小、精度高、响应速度快 、自重符合 比小 等优点,而且很容易实现6自由度运动,更适合作 为多 自由度微动机器人 。 目前压电电致伸缩陶瓷驱动的柔性支承微 位移机构具有结构紧凑、体积小、无机械摩擦 、无 间隙、具有很高的位移分辨率等特点。由于压 电 或电致伸缩器件的机电耦合效应效率高,速度快 , 来不及与外界热交换 ,因此不存在发热问题 ,同时 基座 没有噪声,适用于在各种介质环境下工作 ,是比较 图 2 6-SPS并联机构原理图 理想的微位移器件_7。 Fig2 Sketchofparallelrobot 为了满足高精度 、多 自由度定位的要求 ,本文 将压电陶瓷致动器与并联机构相结合设计了一种 并联机构末端空间 自由度数 ,可通过如下公 式计算: 新型的压 电陶瓷驱动并联微动机器人 ,可作为理 想的多 自由度精密定位平台使用。 M =6(n-g- 1)+ , (1) 2 6自由度微 动并联机 器人结构设 式中 M 一机构 自由度数 ; n组成机构的杆件数; 计 g机构中运动副的数 目; 21 机构形式 第 i运动副的相对 自由度数 。 图1是作者研制 的集成式 6一DOF微动并联 通过上式计算可知,该机构的动平台 自由度 机器人 ,图2是该机构 的原理 图。这种机器人属 数为 6。 于六杆件双平台结构 ,上下两个平台通过六个运 22 铰链形式选择及尺寸设计 动副结构形式相同的分支以并联方式相联接 。根 为实现微动机器人六 自由度运动 ,要求柔性 第9期 王振华 ,等:集成式 6自由度微动并联机器人系统 铰链可以实现绕三个正交轴的转动 ,所 以需采用 万向柔性铰链 (柔性球铰)。 3 6-DOF微动并联机器人性能分析 柔性铰链 的设计要求转动精度高、寄生运动 小,本文采用理论计算与有限元分析 的方法对柔 31 运动学分析 性铰链进行优化设计 。首先采用 solidworks软 根据 6-SPS并联机构运动学逆解方程 : 件进行实体建模 ,有 限元分析软件采用 cosmos R=TR +P , (2) works,模型如 图 3所示。考虑到实 际加工 能力 式中 卜 坐标变换矩阵 ; 和结构强度 ,铰链最小直径 D一2mm。 P一动坐标系原点在 固定坐标系 中的位置矢 量 。 对于运动范 围在微米级 的微动机器人 ,上述 转换矩阵中的正弦及余弦函数,因为转角足够小 (微弧度级),可近似认为 sin 、COS 1、 sin 、COS 1、sin0 、COS0 1。 于是 T矩阵可简化为 : 厂 1 0 0 图3 柔性铰链有限元模型 Tl + 1一 0 一 I, (3) Fig3 Flexiblehingeanalysis L 一 + 1j 在分析中分别采用铝合金和尼龙两种结构材 忽略高阶无穷小 ,可简化得到: 料,分析结果如表 1。 厂 1 0 0 I I 第六图书馆 T I一0 1 一 I (4) 表 1 有 限元分析数据 LI I Tab1 Analysisresults 一 0 1 J 32 工作空间分析 当结构尺寸确定以后 ,各铰链点在空间中的 位置也随之确定 ,根据前述运动学逆解方程 ,采用 Matlab软件进行理论求解 ,其结果如下 : 绕 轴方向:0033。; 绕 轴方 向:0035。; 绕 z轴方向:01。 假设绕 、 z角为 0时 ,平台中心运动空间 由于压 电陶瓷抗剪切力和抗扭 曲力的能力较 仿真结果如下: 差,在保证结构强度前提下,选择旋转刚度较小 的 杆长变化最大 0032mm; 材料利于改善压电陶瓷的受力状态 。综合上述 因 沿 z轴方向:0050mm; 素 ,在本设计中采用尼龙作为柔性铰链材料 。 沿Y轴方 向:0058mm; 23 其它参数选择 沿 z轴方向:00033mm。 为了扩大工作空间,上下平 台半径之 比一般 图4为通过仿真计算得到的微动并联机器人 取为 一0712,现取上平台直径为 85mm(铰 在绕z、Y、z角为 0时的工作空间。 链点所在圆周),下平 台直径为 110mm(铰链点 33 刚度分析 所在 圆周),上平 台短边夹角取 30。,为 了计算方 采用 cosmosworks软件对模型进行工作台 便,将上平台短边连线与下平台长边连线投影重合。 整体刚度分析和安全校核 ,分析结果如图5所示。 光学 精密工程 第15卷 可见 ,并联机器人法线刚度要远大于切向刚 0 度,法 向承载能力也远大于切 向承载能力。从结 0 果来看,法向承载50N时,其安全系数足够大,但 0 切 向承载 20N时,安全系数接近安全下限。 0 - 0 4 控制 系统设计 压电陶瓷具有体积小、质量轻、分辨率高、响 应速度快等优点,同时也存在迟滞、蠕变、非线性 等不足。本设计基于主从计算机控制系统,采用 图4 微动并联机器人工作空间 数字 PID控制算法对压电陶瓷驱动器进行位置 Fig4 Workingspaceoftheparallelmicrorobot 闭环控制。 该系统采用工控机作为主控计算机,实现人 机交互功能和运动轨迹的规划 ,而从计算机高速 数字信号处理器 DSP单片机实现并联微动机器 人六个压电陶瓷的控制 。主计算机直接接收外界 的控制命令和参数 ,对机器人位置实时监控 ,显示 信息,向下级发出各种控制命令等 。从计算机接 收上一级计算机送入 的命令和相应的位置信息, 一 实时检测被控压 电陶瓷的状态值 ;依据给定量和 实际检测量的差值进行控制策略的计算,以求出 第六图书馆 被控对象应有的控制信息。信息通讯 口采用高速 EPP接口方式,实现两级计算机之间信息的通 讯,此接 口传递两级计算机协调控制所必需信息, 并可实现多台从计算机的级连。系统中压电陶瓷 的位置反馈信号来源于集成在压电陶瓷内部的半 导体应变片的电压 ,此 电压经精密运算放大电路 一 和AD转换电路送入到单片机 内部。压 电陶瓷 的驱动采用哈工大博实精密测控有限公司研制的 (c)切 向刚度分析 (d)切 向安全校核 (c)Tangentstiffnessanalysis (d)Tangentsafetyverify HPV系列压电陶瓷驱动电源。 图5 微动并联机器人刚度分析 Fig5 Stiffnessanalysis 表 2 机器人整体分析数据 Tab2 Analysisresultsofthewholesystem 项 目 数值 法向剐度 202Nm 法向安全系数 72 (负载=50N) 切向刚度 067N“m 切 向安全系数 图6 数字化精密定位闭环控制器 22 (负载一20N) Fig。6 Digitalcontroller 采用模块方式将压电陶瓷驱动电源、微位移 分析数据见表 2。 第9期 王振华 ,等:集成式 6自由度微动并联机器人系统 传感器检测电路 、中央控制器组合在一起 ,通过 自 对较大。误差曲线如图8(a)所示。 定义的内部总线相连 ,外部通过 EPP数字接 口和 主计算机相连 ,设计 了一个数字化 的精密定位 闭 环控制器 ,其实物照片如 图6所示 。每一 台控制 器可同时控制两路压电陶瓷,三台该控制器级连 使用可同时控制六路压电陶瓷。 5 微动并联机器人测试及误差补偿 51 系统测试 本机器人具有六个独立 自由度 ,因此要全面 测量空间姿态需要六路测量装置 ,测量装置采用 LVDT式(电感式)测微仪 ,为了提高测量精度及 gj g11Z 一。) 一。) 实现测量装置的合理摆放 ,专门研制了测量支架 , 如图7所示 。图中d 。为六路 LVDT微位移 005 ,-、 。 一。 传感器 ,分布在互相垂直的三个平面上。这个测 0 试块可以直接连接在工作平 台上 ,通过直接测试 _o05 这个测试块 的运动情况 ,得到工作台的运动姿态 。 (a)开环 (a)0pen loop 第六图书馆 委 : 委一 一。E亨三1J矿厂三宓一 20 要 : 一 一0E卜亨三三1 10 图 7 测量系统原理 图 喜 一 Fig7 M easurementprinciple 基本测量原理: 00。E卜三三亩一1 -z方向位移 :AxAd。; 转角: =:(Ad6一Ads)L2; _O-00。巨_占卜V三厂三方1 Y方 向位移 : 一 ( + 2)2; 转角: 一(Ad一Ad)L。; o 方向位移 : Ad; 圳EI_三三 转角 :一(Ad一Ad2)L 。 开环测量中,将前述的精密定位闭环控制器 (b)闭环 传感器反馈通道隔离,根据理论计算值给压电陶 (b)Closeloop 瓷加一定的电压,输出对应 的位移。由于受压 电 图8 开环、闭环测试曲线 陶瓷本身迟滞、蠕变等特性的影响,使其位移与电 Fig8 Measurementresultswithopenloopandcloseloop 压的对应关系造成的误差较大。相比而言 ,、 、 对压电陶瓷 的闭环控制实验 中,加入传感器 方向的误差相对较小 ,而 、Y、 方向的误差相 光学 精密工程 第15卷 反馈通道 ,传感器实时检测压 电陶瓷的位移状况, 对于整个系统确切的应为半闭环。下面提出全闭 根据控制器的控制策略使理想位移与实际位移保 环思想 ,并通过试验来验证 。 持一致,控制精度为01,基本消除了压 电陶瓷 上位机中给 出理论末端姿态,计算出各杆 的 的迟滞与蠕变影响。闭环测试 曲线如图8(b)所 伸长量,将指令发送给闭环控制器 ,闭环控制器驱 示 。可见 闭环试验结果 比开环效果 明显要好得 动机器人动作 。由LVDT测量出实际的末端姿 多。 态,将数据传回上位机,上位机处理后将补偿量指 虽然末端姿态位置误差受到压电陶瓷驱动杆 令送到 闭环控制器 ,调整机器人 的姿态 ,再 由 长度误差、上下平台铰链的空间位置误差 的直接 LVDT测出实际值 ,送 回上位机 。如此直到末端 影响,但不是各误差源的简单线形叠加,而是同时 位姿达到一定误差范围内的值。 可能含有不同程度的部分重叠或抵 消,这也正是 对 (10,10,15,0,0,0)和 (8,8,16,0,0,0)两种 并联机构优于串联机构的优点之一 。 机器人位姿进行 了误差补偿 。其 中(10,10,15,0, 52 初始误差修正 0,0)的测 量值 为 (1107,936,134,00011, 首先假设上、下平台的每一个铰链都有 ,Y, 00023,00017),第一 次补 偿 后为 (979, z方向上的三个误差 ,且每条杆没有伸长时 的长 1001,l489,00009,0002,00015),已经达 度也存在误差 (原始误差),无误差时对应每一个 到很高精度 ,如果再次补偿 ,LVDT的误差开始 指定点,都可由反解 的思想求出各杆的长度 L。 影响数据精度 ;(8,8,16,0,0,0)的测量值为 在已知各杆的理想原始长度 L。时,可由dL=L (783,972,1451,0000 7,00012,00042), 一 L。求得各杆 的长度增量。令有误差时各杆 的 第一次补偿后为 (748,843,1564,0001,0001 原始长度为 L 所以各杆的实际长度应该为 L 1,00025),第二次补偿后为 (788,82,161, 一 dL+L 由于这些实际长度可由测量得到,所 00007,00012,00014)。从上述数据可以看 以也可将其称为测量值。用 (。,Y。,z。, , , 出,经过两次补偿后 ,系统误差 明显减小,但 由于 第六图书馆 )表示上平台的初始位姿,将其设为指定点位 机构耦合因素 ,并不能完全消除定位误差。 姿,反解求出对应该位姿的各杆长度,称为计算 值 ,把各杆 的实际值和计算值的差值记为 L,表 6 结 论 示杆长的增量 ,(Ax,Ay,Az,A ,A0Y, )表示 位姿 的增量。通过 L 求 出 (Ax,Ay,Az,A , 本文将压电陶瓷与并联机构相结合,设计 了 , )。之后 ,让位姿各个增量变为: 一 种集成式的并联微动机器人,该微动机器人采 0+ Ax,YYo+ Ay , : + A 用压电陶瓷微驱动元件,充分利用其高精度 、高分 重复 以上过程 ,直到 maxILI小于指定的 辨率 、高频响、无发热、体积小、出力大等优点 。采 允差值e止。这时可认为平台初始位姿测量值 已 用柔性铰链机构作为传动机构,具有无间隙、无摩 求出来 了。测量各个杆长初始值为:(63062, 擦 、高稳定性 、高重复性 的特点 。整体采用 6-SPS 62996,63025,63033,63041,62942),由程序 并联机构形式,具有结构紧凑 、体积小、重量轻 、刚 计算初始位姿误差为 (一000034,000018, 度大、在工作范 围内一般不存在反解 的多值性等 00003,一00012,000017,一0000028)。对 优点。该机器人将机构 、驱动 、检测一体化设计 , 各输入电压进行修正,在实验输入电压前 ,六路电 显示出很好 的集成性。通过修正压 电元件迟滞、 压要分别减去 (28,02,一07,一03,07,3)V。 蠕变等误差因素,获得了很高的定位精度 。实验 53 误差补偿 表明,该机器人可以实现 10nm直线重复定位精 前面提到的闭环测量实际上只是针对压电陶 度和 00001。转动重复定位精度。该机器人具有 瓷的闭环,只是消除了压电陶瓷的迟滞与蠕变对 集成度高、定位精度高的特点,可以方便地集成到 定位精度的影响,并没有消除系统其它误差因素, 精密操作系统中实现多 自由度、高精度定位。 第9期 王振华 ,等 :集成式 6自由度微动并联机器人系统 1397 参考文献 : 1 ELLISGWPiezoelectricmicromanipulatorsEJScienceInstrumentsandTechniques,1962,138:8491 2 HUDGENSJC,TESARDAnalysisofafully-parallelsixdegree-of-freedom micromanipulatorCProceedings 0fIEEE InternationalCon renceonAdvancedRobotics,Pisa,Italy,1991:814820 3 GRACEKW ,COLGATEJE,GLUCKBERGM RAsixdegreeoffreedommicromanipulatorforophthalmicsur gerycProceedingsofIEEE InternationalCon renceonRoboticsandAutomation,Atlanta,USA,1993: 630635 43 WANGSC,HIKITAH,KUBOH,eta1Kinematicsanddynamicsofa6degree-of-freedomfullyparallelma nipulatorwithelasticjointsJMechanismandMachineTheory,2003,38:439461 53 黄真,孔令富,方跃法并联机器人机构学理论及控制 M北京:机械工业 出版社,1997 HUANGZH,KONGLF,FANGYFTheoryandControlofParallelRoboticsMechanism MBeijing:Me chanicalIndustryPress,1997(inChinese) 63 安辉压电陶瓷驱动六 自由度并联微动机器人 的研究 D哈尔滨工业大学博士学位论文,1995 ANH6一DOFparallelrobotdrivenbyPZT DGraduateHarbinInstituteofTechnology,1995(inChinese) 73 田延岭,张大卫,闰兵二 自由度微定位平 台的研制 J光学 精密工程 ,2006,14(1):9599 TIANYL,ZHANGDW ,YANBDevelopmentofa2-DOFmicropositioningtableJOptPrecisionEng, 2006,14(1):9599(inChinese) 8 邵兵,孙立宁,曲东升自由空间光通信 ATP系统中精瞄偏转镜的设计J光学精密工程,2006,14(1):4346 SHAOB,SUNLN,QU DSHDesignoffinepointingtiptiltmirrorofATPsystem forfreespaceopticalcorn municationJOptPrecisionEng,2006,14(1):4346(inChinese) 93 马立,荣伟彬,孙立宁三维纳米级微动工作台的设计与分析J光学精密工程,2006,14(6):10171024 MAL,RONGW B,SUNLNDesignandanalysisofanovel3-DOFnanopositioningstageJOptPrecision Eng,2006,14(6):10171024(inChinese) 第六图书馆 作者简介 :王振华 (1974一),男,黑龙江人,哈尔滨工业大学博士研究生,主要从事微驱动技术方面的研究。Email:wzh hiteducn 陈立国(1974一),男,辽宁省人,哈尔滨工业大学副教授 ,硕士研究导师,主要从事微操作及显微视觉等方面的 研究 。E-mail:clghiteducn 孙立宁(1964一),男,黑龙江人,哈尔滨工业大学教授 ,博士生导师,主要从事微操作、微驱动及机器人学等方 面的研 究。E-mail:lnsunhiteducn An industrial robot is officially defined by ISO1 as an automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes. The field of robotics may be more practically defined as the study, design and use of robot systems for manufacturing (a top-level definition relying on the prior definition of robot).Typical applications of robots include welding, painting, assembly, pick and place, packaging and palletizing, product inspection, and testing, all accomplished with high endurance, speed, and precision.Robot types, featuresThe most commonly used robot configurations are articulated robots, SCARA robots and Cartesian coordinate robots, (aka gantry robots or x-y-z robots). In the context of general robotics, most types of robots would fall into the category of robotic arms (inherent in the use of the word manipulator in the above-mentioned ISO standard). Robots exhibit varying degrees of autonomy:Some robots are programmed to faithfully carry out specific actions over and over again (repetitive actions) without variation and with a high degree of accuracy. These actions are determined by programmed routines that specify the direction, acceleration, velocity, deceleration, and distance of a series of coordinated motions. Other robots are much more flexible as to the orientation of the object on which they are operating or even the task that has to be performed on the object itself, which the robot may even need to identify. For example, for more precise guidance, robots often contain machine vision sub-systems acting as their eyes, linked to powerful computers or controllers. Artificial intelligence, or what passes for it, is becoming an increasingly important factor in the modern industrial robot. History of industrial roboticsHistory of industrial roboticsGeorge Devol applied for the first robotics patents in 1954 (granted in 1961). The first company to produce a robot was Unimation, founded by Devol and Joseph F. Engelberger in 1956, and was based on Devols original patents. Unimation robots were also called programmable transfer machines since their main use at first was to transfer objects from one point to another, less than a dozen feet or so apart. They used hydraulic actuators and were programmed in joint coordinates, i.e. the angles of the various joints were stored during a teaching phase and replayed in operation. They were accurate to within 1/10,000 of an inch (note: although accuracy is not an appropriate measure for robots, usually evaluated in terms of repeatability - see later). Unimation later licensed their technology to Kawasaki Heavy Industries and Guest-Nettlefolds, manufacturing Unimates in Japan and England respectively. For some time Unimations only competitor was Cincinnati Milacron Inc. of Ohio. This changed radically in the late 1970s when several big Japanese conglomerates began producing similar industrial robots.In 1969 Victor Scheinman at Stanford University invented the Stanford arm, an all-electric, 6-axis articulated robot designed to permit an arm solution. This allowed it accurately to follow arbitrary paths in space and widened the potential use of the robot to more sophisticated applications such as assembly and welding. Scheinman then designed a second arm for the MIT AI Lab, called the MIT arm. Scheinman, after receiving a fellowship from Unimation to develop his designs, sold those designs to Unimation who further developed them with support from General Motors and later marketed it as the Programmable Universal Machine for Assembly (PUMA).Industrial robotics took off quite quickly in Europe, with both ABB Robotics and KUKA Robotics bringing robots to the market in 1973. ABB Robotics (formerly ASEA) introduced IRB 6, among the worlds first commercially available all electric micro-processor controlled robot. The first two IRB 6 robots were sold to Magnusson in Sweden for grinding and polishing pipe bends and were installed in production in January 1974. Also in 1973 KUKA Robotics built its first robot, known as FAMULUS2, also one of the first articulated robot to have six electromechanically driven axes.Interest in robotics increased in the late 1970s and many US companies entered the field, including large firms like General Electric, and General Motors (which formed joint venture FANUC Robotics with FANUC LTD of Japan). U.S. startup companies included Automatix and Adept Technology, Inc. At the height of the robot boom in 1984, Unimation was acquired by Westinghouse Electric Corporation for 107 million U.S. dollars. Westinghouse sold Unimation to Stubli Faverges SCA of France in 1988, which is still making articulated robots for general industrial and cleanroom applications and even bought the robotic division of Bosch in late 2004.Only a few non-Japanese companies ultimately managed to survive in this market, the major ones being Adept Technology, Stubli-Unimation, the Swedish-Swiss company ABB Asea Brown Boveri and the German company KUKA Robotics.Technical descriptionDefining parametersNumber of axes two axes are required to reach any point in a plane; three axes are required to reach any point in space. To fully control the orientation of the end of the arm (i.e. the wrist) three more axes (yaw, pitch, and roll) are required. Some designs (e.g. the SCARA robot) trade limitations in motion possibilities for cost, speed, and accuracy. Degrees of freedom which is usually the same as the number of axes. Working envelope the region of space a robot can reach. Kinematics the actual arrangement of rigid members and joints in the robot, which determines the robots possible motions. Classes of robot kinematics include articulated, cartesian, parallel and SCARA. Carrying capacity or payload how much weight a robot can lift. Speed how fast the robot can position the end of its arm. This may be defined in terms of the angular or linear speed of each axis or as a compound speed i.e. the speed of the end of the arm when all axes are moving. Acceleration - how quickly an axis can accelerate. Since this is a limiting factor a robot may not be able to reach its specified maximum speed for movements over a short distance or a complex path requiring frequent changes of direction. Accuracy how closely a robot can reach a commanded position. When the absolute position of the robot is measured and compared to the commanded position the error is a measure of accuracy. Accuracy can be improved with external sensing for example a vision system or IR. See robot calibration. Accuracy can vary with speed and position within the working envelope and with payload (see compliance). Repeatability - how well the robot will return to a programmed position. This is not the same as accuracy. It may be that when told to go to a certain X-Y-Z position that it gets only to within 1mm of that position. This would be its accuracy which may be improved by calibration. But if that position is taught into controller memory and each time it is sent there it returns to within 0.1mm of the taught position then the repeatability will be within 0.1mm. Accuracy and repeatability are different measures. Repeatability is usually the most important criterion for a robot. ISO 9283 sets out a method whereby both accuracy and repeatability can be measured. Typically a robot is sent to a taught position a number of times and the error is measured at each return to the position after visiting 4 other positions. Repeatability is then quantified using the standard deviation of those samples in all three dimensions. A typical robot can, of course make a positional error exceeding that and that could be a problem for the process. Moreover the repeatability is different in different parts of the working envelope and also changes with speed and payload. ISO 9283 specifies that accuracy and repeatability should be measured at maximum speed and at maximum payload. But this results in pessimistic values whereas the robot could be much more accurate and repeatable at light loads and speeds. Repeatability in an industrial process is also subject to the accuracy of the end effector, for example a gripper, and even to the design of the fingers that match the gripper to the object being grasped. For example if a robot picks a screw by its head the screw could be at a random angle. A subsequent attempt to insert the screw into a hole could easily fail. These and similar scenarios can be improved with lead-ins e.g. by making the entrance to the hole tapered.Motion control for some applications, such as simple pick-and-place assembly, the robot need merely return repeatably to a limited number of pre-taught positions. For more sophisticated applications, such as welding and finishing (spray painting), motion must be continuously controlled to follow a path in space, with controlled orientation and velocity. Power source some robots use electric motors, others use hydraulic actuators. The former are faster, the latter are stronger and advantageous in applications such as spray painting, where a spark could set off an explosion; however, low internal air-pressurisation of the arm can prevent ingress of flammable vapours as well as other contaminants. Drive some robots connect electric motors to the joints via gears; others connect the motor to the joint directly (direct drive). Using gears results in measurable backlash which is free movement in an axis. Smaller robot arms frequently employ high speed, low torque DC motors, which generally require high gearing ratios; this has the disadvantage of backlash. In such cases the harmonic drive is often used. Compliance - this is a measure of the amount in angle or distance that a robot axis will move when a force is applied to it. Because of compliance when a robot goes to a position carrying its maximum payload it will be at a position slightly lower than when it is carrying no payload. Compliance can also be responsible for overshoot when carrying high payloads in which case acceleration would need to be reduced. Robot programming and interfacesThe setup or programming of motions and sequences for an industrial robot is typically taught by linking the robot controller to a laptop, desktop computer or (internal or Internet) network.A robot and a collection of machines or peripherals is referred to as a workcell, or cell. A typical cell might contain a parts feeder, a molding machine and a robot. The various machines are integrated and controlled by a single computer or PLC. How the robot interacts with other machines in the cell must be programmed, both with regard to their positions in the cell and synchronizing with them.Software: The computer is installed with corresponding interface software. The use of a computer greatly simplifies the programming process. Specialized robot software is run either in the robot controller or in the computer or both depending on the system design.There are two basic entities that need to be taught (or programmed): positional data and procedure. For example in a task to move a screw from a feeder to a hole the positions of the feeder and the hole must first be taught or programmed. Secondly the procedure to get the screw from the feeder to the hole must be programmed along with any I/O involved, for example a signal to indicate when the screw is in the feeder ready to be picked up. The purpose of the robot software is to facilitate both these programming tasks.Teaching the robot positions may be achieved a number of ways:Positional commands The robot can be directed to the required position using a GUI or text based commands in which the required X-Y-Z position may be specified and edited.Teach pendant: Robot positions can be taught via a teach pendant. This is a handheld control and programming unit. The common features of such units are the ability to manually send the robot to a desired position, or inch or jog to adjust a position. They also have a means to change the speed since a low speed is usually required for careful positioning, or while test-running through a new or modified routine. A large emergency stop button is usually included as well. Typically once the robot has been programmed there is no more use for the teach pendant.Lead-by-the-nose is a technique offered by many robot manufacturers. In this method, one user holds the robots manipulator, while another person enters a command which de-energizes the robot causing it to go limp. The user then moves the robot by hand to the required positions and/or along a required path while the software logs these positions into memory. The program can later run the robot to these positions or along the taught path. This technique is popular for tasks such as paint spraying.Offline programming is where the entire cell, the robot and all the machines or instruments in the workspace are mapped graphically. The robot can then be moved on screen and the process simulated. The technique has limited value because it relies on accurate measurement of the positions of the associated equipment and also relies on the positional accuracy the robot which may or may not conform to what is programmed (see accuracy and repeatability, above).Others In addition, machine operators often use user interface devices, typically touchscreen units, which serve as the operator control panel. The operator can switch from program to program, make adjustments within a program and also operate a host of peripheral devices that may be integrated within the same robotic system. These include end effectors, feeders that supply components to the robot, conveyor belts, emergency stop controls, machine vision systems, safety interlock systems, bar code printers and an almost infinite array of other industrial devices which are accessed and controlled via the operator control panel.The teach pendant or PC is usually disconnected after programming and the robot then runs on the program that has been installed in its controller. However a computer is often used to supervise the robot and any peripherals, or to provide additional storage for access to numerous complex paths and routines. End effectorsFactory Automation with industrial robots for palletizing food products like bread and toast at a bakery in GermanyThe most essential robot peripheral is the end effector, or end-of-arm-tooling. Common examples of end effectors include welding devices (such as MIG-welding guns, spot-welders, etc.), spray guns and also grinding and deburring devices (such as pneumatic disk or belt grinders, burrs, etc.), and grippers (devices that can grasp an object, usually electromechanical or pneumatic). Another common means of picking up an object is by vacuum. End effectors are frequently highly complex, made to match the handled product and often capable of picking up an array of products at one time. They may utilize various sensors to aid the robot system in locating, handling, and positioning products.Movement and singularitiesMost articulated robots perform by storing a series of positions in memory, and moving to them at various times in their programming sequence. For example, a robot which is moving items from one place to another might have a simple pick and place program similar to the following:Define points P1P5:Safely above workpiece (defined as P1) 10cm Above bin A (defined as P2) At position to take part from bin A (defined as P3) 10cm Above bin B (defined as P4) At position to take part from bin B. (defined as p5) Define program:Move to P1 Move to P2 Move to P3 Close gripper Move to P2 Move to P4 Move to P5 Open gripper Move to P4 Move to P1 and finish For examples of how this would look in popular robot languages see robot software.For a given robot the only parameters necessary to completely locate the end effector (gripper, welding torch, etc.) of the robot are the angles of each of the joints or displacements of the linear axes (or combinations of the two for robot formats such as SCARA). However there are many different ways to define the points. The most common and most convenient way of defining a point is to specify a Cartesian coordinate for it, i.e. the position of the end effector in mm in the X, Y and Z directions relative to the robots origin. In addition, depending on the types of joints a particular robot may have, the orientation of the end effector in yaw, pitch, and roll and the location of the tool point relative to the robots faceplate must also be specified. For a jointed arm these coordinates must be converted to joint angles by the robot controller and such conversions are known as Cartesian Transformations which may need to be performed iteratively or recursively for a multiple axis robot. The mathematics of the relationship between joint angles and actual spatial coordinates is called kinematics. See robot controlPositioning by Cartesian coordinates may be done by entering the coordinates into the system or by using a teach pendant which moves the robot in X-Y-Z directions. It is much easier for a human operator to visualize motions up/down, left/right, etc. than to move each joint one at a time. When the desired position is reached it is then defined in some way particular to the robot software in use, e.g. P1 - P5 above.The American National Standard for Industrial Robots and Robot Systems Safety Requirements (ANSI/RIA R15.06-1999) defines a singularity as “a condition caused by the collinear alignment of two or more robot axes resulting in unpredictable robot motion and velocities.” It is most common in robot arms that utilize a “triple-roll wrist”. This is a wrist about which the three axes of the wrist, controlling yaw, pitch, and roll, all pass through a common point. An example of a wrist singularity is when the path through which the robot is traveling causes the first and third axes of the robots wrist to line up. The second wrist axis then attempts to spin 360 in zero time to maintain the orientation of the end effector. Another common term for this singularity is a “wrist flip”. The result of a singularity can be quite dramatic and can have adverse effects on the robot arm, the end effector, and the process. Some industrial robot manufacturers have attempted to side-step the situation by slightly altering the robots path to prevent this condition. Another method is to slow the robots travel speed, thus reducing the speed required for the wrist to make the transition. The ANSI/RIA has mandated that robot manufacturers shall make the user aware of singularities if they occur while the system is being manually manipulated.Recent and future developmentsAs of 2005, the robotic arm business is approaching a mature state, where they can provide enough speed, accuracy and ease of use for most of the applications. Vision guidance (aka machine vision) is bringing a lot of flexibility to robotic cells. However, the end effector attached to a robot is often a simple pneumatic, 2-position chuck. This does not allow the robotic cell to easily handle different parts, in different orientations.Hand-in-hand with increasing off-line programmed applications, robot calibration is becoming more and more important in order to guarantee a good positioning accuracy.Other developments include downsizing industrial arms for light industrial use such as production of small products, sealing and dispensing, quality control, handling samples in the laboratory. Such robots are usually classified as bench top robots. Robots are used in pharmaceutical research in a technique called High-throughput screening. Bench top robots are also used in consumer applications (micro-robotic arms). Industrial arms may be used in combination with or even mounted on automated guided vehicles (AGVs) to make the automation chain more flexible between pick-up and drop-off.Prices of robots will vary with the features, but are usually from 7,500 USD for a bench-top model such as the ST Robotics R12 or the Fisnar dispensing robot and as much as 100,000 USD or more for a heavy-duty, long-reach robot such as the Kuka KR1000.翻译工业机器人已正式定义国际标准组织作为自动控制,可重复编程,多功能机械手轴可编程在三个或更多 。 The field of robotics may be more practically defined as the study, design and use of robot systems for manufacturing (a top-level definition relying on the prior definition of robot ).在机器人领域可能会更实际定义为研究,设计和使用机器人的系统制造 (顶层定义机器人依靠事先的定义)。 Typical applications of robots include welding , painting, assembly, pick and place, packaging and palletizing , product inspection, and testing, all accomplished with high endurance, speed, and precision.机器人的典型应用包括焊接 ,涂装,总装, 挑选和地点, 包装及码垛 ,产品检验和测试,精确度和耐力都完成了高,速度快。机器人的种类和特点最常用的配置机器人关节机器人 , SCARA机器人机器人和直角坐标机器人 ,(又名龙门机器人或XYZ机器人)。 In the context of general robotics, most types of robots would fall into the category of robotic arms (inherent in the use of the word manipulator in the above-mentioned ISO standard).在机器人技术方面一般,大多数类型的机器人将落入类机器人手臂 (在ISO标准固有的使用这个词的机械手在上面提到的)。 Robots exhibit varying degrees of autonomy :机器人表现出不同的程度的自主权 : 1.Some robots are programmed to faithfully carry out specific actions over and over again (repetitive actions) without variation and with a high degree of accuracy.一些机器人进行编程以忠实履行一遍又一遍的具体行动同样没有变化及其与高精确度(重复动作)。 These actions are determined by programmed routines that specify the direction, acceleration, velocity, deceleration, and distance of a series of coordinated motions.这些行动是由编程程序 ,指定方向,加速度,速度,减速,和运动距离的一系列协调。 2.Other robots are much more flexible as to the orientation of the object on which they are operating or even the task that has to be performed on the object itself, which the robot may even need to identify.其他机器人更以对象的运作上,他们甚至任务,必须在对象本身,而机器人,甚至可能需要确定执行方向灵活。 For example, for more precise guidance, robots often contain machine vision sub-systems acting as their eyes, linked to powerful computers or controllers. Artificial intelligence , or what passes for it, is becoming an increasingly important factor in the modern industrial robot.例如,对于更精确的指导下,机器人通常包含机器视觉子系统“作为他们的”眼睛,与强大的计算机或控制器。 人工智能 ,它传递了什么,正在成为一个现代化的工业机器人在越来越重要的因素。工业机器人技术的历史乔治德沃尔适用于第一个机器人的专利在1954年(1961年授予)。 The first company to produce a robot was Unimation, founded by Devol and Joseph F. Engelberger in 1956, and was based on Devols original patents.第一家生产出机器人Unimation,并在专利的基础上成立了Devol 约瑟夫F Engelberger于1956年。 Unimation robots were also called programmable transfer machines since their main use at first was to transfer objects from one point to another, less than a dozen feet or so apart. Unimation机器人也称为可编程机 ,因为他们在第一个主要用途是从一个点对象转移到另一个,除了不到十英尺左右。 They used hydraulic actuators and were programmed in joint coordinates , ie the angles of the various joints were stored during a teaching phase and replayed in operation.他们用液压 执行器 ,并在程序关节 坐标 ,即各种操作的角度对关节被储存在一个教学阶段和回放。 They were accurate to within 1/10,000 of an inch (note: although accuracy is not an appropriate measure for robots, usually evaluated in terms of repeatability - see later).他们精确到1 / 10,000英寸(注:虽然精度不是机器人适当的措施,通常是在可重复性来评价 - 见下文)。 Unimation later licensed their technology to Kawasaki Heavy Industries and Guest-Nettlefolds , manufacturing Unimates in Japan and England respectively. Unimation后授权他们的技术, 川崎重工和来宾Nettlefolds 制造分别在日本和英国。 For some time Unimations only competitor was Cincinnati Milacron Inc.一段时间以来Unimation唯一的竞争对手是美国俄亥俄州的辛辛那提米拉克龙公司 of Ohio .。 This changed radically in the late 1970s when several big Japanese conglomerates began producing similar industrial robots.这开始发生剧变在20世纪70年代末当几个大型日资企业集团开始生产相似工业机器人。 In 1969 Victor Scheinman at Stanford University invented the Stanford arm , an all-electric, 6-axis articulated robot designed to permit an arm solution . 1969年, 维克多沙因曼在斯坦福大学发明了斯坦福大学的手臂 ,全电动,6轴关节机器人的设计上允许一ARM解决方案 。 This allowed it accurately to follow arbitrary paths in space and widened the potential use of the robot to more sophisticated applications such as assembly and welding.这使得它准确地按照空间任意路径和拓宽了机器人的潜在用途,如装配,焊接更复杂的应用。 Scheinman then designed a second arm for the MIT AI Lab, called the MIT arm.沙因曼然后设计了一个第二臂麻省理工学院 人工智能实验室,被称为“麻省理工学院的胳膊。” Scheinman, after receiving a fellowship from Unimation to develop his designs, sold those designs to Unimation who further developed them with support from General Motors and later marketed it as the Programmable Universal Machine for Assembly (PUMA).沙因曼,在收到Unimation研究生奖学金,以他的设计开发设计,Unimation出售得到进一步发展,得到他们的支持与通用汽车公司销售,后来它作为可编程的通用组装机。 Industrial robotics took off quite quickly in Europe, with both ABB Robotics and KUKA Robotics bringing robots to the market in 1973.工业机器人起飞很快在欧洲,既有ABB机器人和库卡机器人使市场在1973年机器人。 ABB Robotics (formerly ASEA) introduced IRB 6, among the worlds first commercially available all electric micro-processor controlled robot. ABB机器人(以前的ASEA)介绍了IRB6,是世界上第一个商用全电动微型处理器控制的机器人。 IRBThe first two IRB 6 robots were sold to Magnusson in Sweden for grinding and polishing pipe bends and were installed in production in January 1974.irbIRB的前两个机器人共售出给马格纳森在瑞典的研磨和抛光管弯头和生产安装在1974年1月。 Also in 1973 KUKA Robotics built its first robot, known as FAMULUS 2 , also one of the first articulated robot to have six electromechanically driven axes.库卡机器人也于1973年建立了自己的第一个机器人,被称为FAMULUS 2 ,也是第一个机器人关节有六个可变性带动轴。 Interest in robotics increased in the late 1970s and many US companies entered the field, including large firms like General Electric , and General Motors (which formed joint venture FANUC Robotics with FANUC LTD of Japan).美国许多公司在机器人技术的兴趣增加了70年代末和进入领域,包括大型企业一样, 通用电气和通用汽车 (其中成立合资公司如法兰克等)。 US startup companies included Automatix and Adept Technology , Inc. At the height of the robot boom in 1984, Unimation was acquired by Westinghouse Electric Corporation for 107 million US dollars.美国初创公司包括Automatix和娴熟的技术在1984年,生产了高度繁荣的机器人,Unimation收购了西屋电气公司 107万美元。 Westinghouse sold Unimation to Stubli Faverges SCA of France in 1988, which is still making articulated robots for general industrial and cleanroom applications and even bought the robotic division of Bosch in late 2004.西屋公司出售Unimation于1988年给法国的政府,仍然使工业和关节机器人应用于生活和工业,甚至在2004年年底购买了机器人系统。 Only a few non-Japanese companies ultimately managed to survive in this market, the major ones being Adept Technology, Stubli-Unimation, the Swedish - Swiss company ABB Asea Brown Boveri and the German company KUKA Robotics.只有少数非日本公司最终成功地生存在这个市场中,其中主要的有娴熟的技术,史陶比尔- Unimation 瑞典 - 瑞士公司ABB公司阿西亚布朗勃法瑞和德国库卡机器人公司。技术描写定义参数数轴 -两轴必须达到任何平面点一;三个轴都必须达到空间的任何一点。 To fully control the orientation of the end of the arm (ie the wrist ) three more axes ( yaw, pitch, and roll ) are required.完全控制手臂的方向,最后的(即手腕 )三个轴( 偏航,俯仰和滚动 )是必需的。 Some designs (eg the SCARA robot) trade limitations in motion possibilities for cost, speed, and accuracy.一些设计(如SCARA机器人)在成本,速度和精度运动的可能性贸易限制。 Degrees of freedom which is usually the same as the number of axes. 自由度通常是相同的轴的数量。 Working envelope the region of space a robot can reach. 工作信封 -空间区域的一个机器人可以到达。 Kinematics the actual arrangement of rigid members and joints in the robot, which determines the robots possible motions. 运动学 -成员和实际安排刚性关节的机器人,它决定了机器人的可能运动。 Classes of robot kinematics include articulated, cartesian, parallel and SCARA.机器人运动学的类别包括关节,笛卡尔, 平行和SCARA机器人。 Carrying capacity or payload how much weight a robot can lift. 承载能力或有效载荷 -多少机器人能举起的重量。 Speed how fast the robot can position the end of its arm. 速度 -如何快速定位臂机器人可以结束它。 This may be defined in terms of the angular or linear speed of each axis or as a compound speed ie the speed of the end of the arm when all axes are moving.这可能是定义在每个轴的角度和线性速度方面,还是作为一个复合速度即对所有轴的手臂时,正结束速度。 Acceleration - how quickly an axis can accelerate. 加速 -如何快速一轴可以加快。 Since this is a limiting factor a robot may not be able to reach its specified maximum speed for movements over a short distance or a complex path requiring frequent changes of direction.由于这是一个限制因素的机器人可能无法达到运动在短距离内或一个复杂的路径,需要频繁改变方向其规定的最大速度。 Accuracy how closely a robot can reach a commanded position. 精度 -如何密切机器人可以达到指令位置。 When the absolute position of the robot is measured and compared to the commanded position the error is a measure of accuracy.当机器人绝对位置测量和比较的指令位置误差测量的精度。 Accuracy can be improved with external sensing for example a vision system or IR.精度可与外部,例如改善视觉系统感应或红外线。 See robot calibration .见机器人校准 。 Accuracy can vary with speed and position within the working envelope and with payload (see compliance).精度可以随速度与位置在工作信封和有效载荷(见遵守)。 Repeatability - how well the robot will return to a programmed position. 重复性 -如何做好机器人程序将返回到一个位置。 This is not the same as accuracy.这是不一样的精度相同。 It may be that when told to go to a certain XYZ position that it gets only to within 1mm of that position.这可能是因为当被要求去某某某的立场,即只有在得到该职位的1毫米。 This would be its accuracy which may be improved by calibration.这将是它的精度可通过校准改善。 But if that position is taught into controller memory and each time it is sent there it returns to within 0.1mm of the taught position then the repeatability will be within 0.1mm.但是,如果该位置是教控制器记忆,每到这是派有时间返回到教内的位置0.1毫米那么将在重复性可达0.1mm。 Accuracy and repeatability are different measures.准确度和可重复性是不同的措施。 Repeatability is usually the most important criterion for a robot.通常是重复性的机器人最重要的标准。 ISO 9283 sets out a method whereby both accuracy and repeatability can be measured.国际标准组织9283规定了双方的准确性和可重复性,即可以测量方法。 Typically a robot is sent to a taught position a number of times and the error is measured at each return to the position after visiting 4 other positions.通常,机器人被发送到一个教授职位的人次数和错误是在参观后各4个其他职位返回到测量位置。 Repeatability is then quantified using the standard deviation of those samples in all three dimensions.重复性然后用量化的标准差三个层面对这些样本研究。 A typical robot can, of course make a positional error exceeding that and that could be a problem for the process.一个典型的机器人可以做当然是定位误差超过的,这可能是一个问题的过程。 Moreover the repeatability is different in different parts of the working envelope and also changes with speed and payload.此外,该重复性在不同地方的工作信封,并与不同的速度和负载的变化。 ISO 9283 specifies that accuracy and repeatability should be measured at maximum speed and at maximum payload.国际标准组织9283指定的准确性和可重复性应在最高速度和最大有效载荷测量。 But this results in pessimistic values whereas the robot could be much more accurate and repeatable at light loads and speeds.但在机器人悲观值,而这个结果可能会更加准确,在轻负载和速度重复的。 Repeatability in an industrial process is also subject to the accuracy of the end effector, for example a gripper, and even to the design of the fingers that match the gripper to the object being grasped.在工业过程重复性也受年底效应的准确性,例如引人入胜,甚至到了手指相匹配的夹持器的对象被抓住的设计。 For example if a robot picks a screw by its head the screw could be at a random angle.例如,如果一个机器人摘了它的头部拧螺丝可以在任意角度。 A subsequent attempt to insert the screw into a hole could easily fail.随后尝试将一孔插入螺丝很容易失败。 These and similar scenarios can be improved with lead-ins eg by making the entrance to the hole tapered.这些以及类似的情景可以改善,通过使入口处的锥形孔开场白如。 Motion control for some applications, such as simple pick-and-place assembly, the robot need merely return repeatably to a limited number of pre-taught positions. 运动控制 -就地大会的一些应用,如简单的挑选和,机器人只需要重复地返回到一个教授职位数量有限的预。 For more sophisticated applications, such as welding and finishing ( spray painting ), motion must be continuously controlled to follow a path in space, with controlled orientation and velocity.对于更复杂的应用程序(如焊接和精加工喷漆 ),运动必须持续控制在遵循空间路径在速度,方向和可控。 Power source some robots use electric motors , others use hydraulic actuators. 电源 -一些机器人的使用电动机 ,其他人使用液压致动器。 The former are faster, the latter are stronger and advantageous in applications such as spray painting, where a spark could set off an explosion ; however, low internal air-pressurisation of the arm can prevent ingress of flammable vapours as well as other contaminants.前者快,后者是更强大和有利小康的应用,如喷漆,在那里可以设置一个火花爆炸 ,但内部的空气低臂加压的入口可以防止易燃气体污染物以及其他。 Drive some robots connect electric motors to the joints via gears ; others connect the motor to the joint directly ( direct drive ). 驱动器 -一些机器人关节连接的电动机通过齿轮 ,其他连接电机的联合( 直接驱动 )。 Using gears results in measurable backlash which is free movement in an axis.使用可衡量的反弹,这是自由流动的轴齿轮的结果。 Smaller robot arms frequently employ high speed, low torque DC motors, which generally require high gearing ratios; this has the disadvantage of backlash.较小的机器人手臂经常采用高速,低扭矩直流电机,一般需要高杠杆比率,这具有反弹的缺点。 In such cases the harmonic drive is often used.在这种情况下, 谐波传动是常用的。 Compliance - this is a measure of the amount in angle or distance that a robot axis will move when a force is applied to it. 遵守 -这是一个衡量它的金额在角度或距离,机器人轴移动时会施加力量。 Because of compliance when a robot goes to a position carrying its maximum payload it will be at a position slightly lower than when it is carrying no payload.由于机器人时遵守的位置去执行它的最大有效载荷将在一个位置时,比没有携带有效载荷低。 Compliance can also be responsible for overshoot when carrying high payloads in which case acceleration would need to be reduced.合规,也可用于超调载有高载荷时负责在这种情况下,加速将需要减少机器人编程和接口Offline programmingROBCThe setup or programming of motions and sequences for an industrial robot is typically taught by linking the robot controller to a laptop , desktop computer or (internal or Internet) network .安装程序或编程和机器人的动作序列的工业是典型的教导机器人控制器连接到笔记本电脑 ,台式电脑或(内部或Internet) 网络 。 A robot and a collection of machines or peripherals is referred to as a workcell , or cell.一个机器人和外围设备收集的机器,或称为一个工作单元或细胞。 A typical cell might contain a parts feeder, a molding machine and a robot.一个典型的细胞可能包含部分料机,一个成型机和一个机器人。 The various machines are integrated and controlled by a single computer or PLC .各种机器的集成和或控制的一台计算机的PLC 。 How the robot interacts with other machines in the cell must be programmed, both with regard to their positions in the cell and synchronizing with them.机器人如何与细胞相互作用的其他机器必须设置既涉及其在细胞的位置,并与他们同步。 Software: The computer is installed with corresponding interface software. 软件:计算机安装有相应的接口软件。 The use of a computer greatly simplifies the programming process.一台计算机的使用大大简化了编程过程。 Specialized robot software is run either in the robot controller or in the computer or both depending on the system design.专门机器人软件的运行,也可以在机器人控制器或在计算机或同时根据系统设计。 There are two basic entities that need to be taught (or programmed): positional data and procedure.有两种基本实体,需要被教导(或程序):定位数据和程序。 For example in a task to move a screw from a feeder to a hole the positions of the feeder and the hole must first be taught or programmed.对于一个任务从一个移动到一个螺丝接驳的接驳和孔的位置,必须先教或程序漏洞的例子。 Secondly the procedure to get the screw from the feeder to the hole must be programmed along with any I/O involved, for example a signal to indicate when the screw is in the feeder ready to be picked up.其次,程序,更好地利用馈线螺丝孔,必须与任何编程,我走/ O的参与,比如一个信号,表明何时螺旋给料机是在准备被拾起。 The purpose of the robot software is to facilitate both these programming tasks.机器人的软件的目的是促进这两个编程任务。 Teaching the robot positions may be achieved a number of ways:教学机器人达成位置可实现多种方式: Positional commands The robot can be directed to the required position using a GUI or text based commands in which the required XYZ position may be specified and edited. 定位命令的机器人,可到所需的位置使用的GUI或基于文本的指令中所要求的XYZ的位置可能被指定和编辑。 教吊坠:机器人的位置可能被教通过教垂饰。这是一个手持控制和编程的单位。有关单位的共同特征是能够手动发送所需的机器人的位置,或者寸”或“慢跑来调整一个位置。他们会有一个意思是改变速度慢速以来通常需要细致的定位,或者在test-running通过一种新的或修改程序。一个大紧急停车按钮通常包含。通常一旦机器人程序没有更多的使用为教垂饰。Lead-by-the-nose is a technique offered by many robot manufacturers. Lead-by-the-nose提供许多技术为机器人制造商。在该方法中,一个用户拥有机器人的机械臂,而另一个人进入了一个命令,它将de-energizes机器人使它放松。用户然后将手机器人所需要的位置和/或沿着一条道路,而软件需要日志这些位置到内存中。该程序可以后运行机器人这些位置或沿着教的道路。这项技术广泛应用于任务,如喷涂。Offline programming is where the entire cell, the robot and all the machines or instruments in the workspace are mapped graphically. 离线编程是在整个单元机器人,所有的机器或工具在工作区映射图形。 The robot can then be moved on screen and the process simulated.该机器人可以在屏幕上移动,过程模拟。 The technique has limited value because it relies on accurate measurement of the positions of the associated equipment and also relies on the positional accuracy the robot which may or may not conform to what is programmed (see accuracy and repeatability, above).该技术具有有限的价值,因为它依赖于对相关设备的位置精确的测量和定位精度上也依赖于机器人可能会或可能不符合什么是编程(见准确性和可重复性,段)。 Others In addition, machine operators often use user interface devices, typically touchscreen units, which serve as the operator control panel. 其他此外,经常使用机器操作的用户界面的设备,通常触摸屏单元,面板作为经营者的控制权。 The operator can switch from program to program, make adjustments within a program and also operate a host of peripheral devices that may be integrated within the same robotic system.操作者可以从程序之间切换,使方案调整,并在操作的主机周边设备,可能机器人系统集成在同一个。 These include end effectors , feeders that supply components to the robot, conveyor belts , emergency stop controls, machine vision systems, safety interlock systems, bar code printers and an almost infinite array of other industrial devices which are accessed and controlled via the operator control panel.这些措施包括年底效应 ,驳运机器人提供零部件, 输送带 ,紧急停止控制, 机器视觉系统,安全联锁系统, 条码打印机和其它工业设备几乎无限阵列的存取和控制通过操作面板控制。 The teach pendant or PC is usually disconnected after programming and the robot then runs on the program that has been installed in its controller .示教吊坠或PC断开后,通常是编程和机器人,然后在其上运行的程序已安装控制器 。 However a computer is often used to supervise the robot and any peripherals, or to provide additional storage for access to numerous complex paths and routines.但是计算机经常被用来监督的机器人和所有外围设备,或提供获取许多复杂的路径和程序额外的存储尾效应最重要的外设机器人末端执行 ,或尾臂工具。 Common examples of end effectors include welding devices (such as MIG-welding guns, spot-welders, etc.), spray guns and also grinding and deburring devices (such as pneumatic disk or belt grinders, burrs, etc.), and grippers (devices that can grasp an object, usually electromechanical or pneumatic ).最终的效应常见的例子包括:(如米格焊接枪,当场焊工等)焊接设备,喷涂枪还研磨和去毛刺(如磁盘或带气动研磨机,毛刺等)的设备和夹子(设备,可以把握的对象,通常是机电或气动 )。 Another common means of picking up an object is by vacuum .另一种常用方法的对象是捡真空 。 End effectors are frequently highly complex, made to match the handled product and often capable of picking up an array of products at one time.完效应往往非常复杂的,作出处理的产品和匹配往往一次拿起一个产品阵列的能力。 They may utilize various sensors to aid the robot system in locating, handling, and positioning products.它们可利用各种传感器,以帮助定位机器人系统,搬运和定位产品运动和奇异性大多数关节机器人执行通过存储在内存中的位置系列,并在他们的移动编程顺序不同时期给他们。 For example, a robot which is moving items from one place to another might have a simple pick and place program similar to the following:例如,一个机器人正在从一个地方到另一个项目可能有一个简单的取放计划类似于以下内容: Define points P1P5: 定义点P1 - P5号: 1. Safely above workpiece (defined as P1)上述安全工件(如P1定义) 2. 10cm Above bin A (defined as P2) 10厘米以上斌A(如P2的定义) 3. At position to take part from bin A (defined as P3)在位置,从bin的部分(如P3的定义) 4. 10cm Above bin B (defined as P4) 10厘米以上斌B(如P4的定义) 5. At position to take part from bin B. (defined as p5)在位置从斌B.第一部分(如小五定义) Define program: 定义程序: 1. Move to P1移动到P1 2. Move to P2移动到P2 3. Move to P3移动到P3 4. Close gripper关闭抓手 5. Move to P2移动到P2 6. Move to P4移动到P4 7. Move to P5移动为P5 8. Open gripper打开手柄 9. Move to P4移动到P4 10. Move to P1 and finish移动到P1和完成 For examples of how this would look in popular robot languages see robot software .语言的例子,看看如何在流行的机器人将看到机器人软
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。