




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
合作探究探究点1 旋转的概念情景激疑时钟上的秒针不停地转动,小小风车带给我们许多童年的欢乐,这些现象有什么共同特点?知识讲解把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P,那么这两个点叫做对应点.注意 (1)图形的旋转就是一个图形围绕一点旋转一定的角度,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这是判断旋转的关键。(2)旋转中心是点而不是线,旋转必须指出旋转方向。(3)旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点。典例剖析例1 如图,QAB绕O点按顺时针方向旋转得到OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解析 根据定义,围绕旋转的点为旋转中心,对应点与旋转中心相连的线段的夹角都是旋转角。答案(1)旋转中心是O,AOE、BOF 都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.方法指导要充分理解旋转概念的含义,结合图形变换前后的关系找出对应点,从而确定旋转角及其对应点的变化。类题突破1 如图,在ABC中,CAB=65,将ABC在平面内绕点A旋转到ABC的位置,使CC/AB,则旋转角的度数为( )A.35 B.40 C.50 D.65解析 CC/AB,ACC=CAB=65,ABC绕点A旋转得到ABC,AC=AC,CAC=180-2ACC=180-265=50,CAC=BAB=50.故选C.答案 C探究点2 旋转的性质情景激疑把手中的三角板贴在白纸上,描出内部的三角形,然后围绕一点(点出此点)转动一定角度,再描出内部的三角形,测量出对应点和旋转中心所连线段的长度,比较旋转角的大小并观察验证两三形的关系,你能得到什么结论?知识讲解旋转的性质:(1)对应点到旋转中心的距离相等。(2)对应点与旋转中心所连线段的夹角等于旋转角。(3)旋转前、后的图形全等。注意 (1)旋转中心、旋转方向、旋转角度是确定旋转的关键.(2)性质是通过学生操作验证得出的结论,性质(1)和(2)是旋转作图的关键,整个性质是旋转这部分内容的核心,是解决有关旋转问题的基础.(3)要正确理解旋转中的变与不变,寻找等量关系,解决问题。知识讲解例2 如图,ABC为等边三角形,D为ABC内一点,ABD经过旋转后到达ACP的位置,则,(l)旋转中心是什么?(2)旋转角的度数是多少?(3)ADP是什么三角形,为什么?解析 由于ACP是由ABD旋转得到的,这两个三角形的形状大小都没有变化,只是位置作了变换,在旋转过程中点A始终保持未动,AB转到AC上,AD转到AP上,即AB的对应线段是AC,AD的对应线段是AP,而旋转角是一组对应线段的夹角,即BAC=DAP=60,AD=AP.答案 (1)点A (2)60(3)AD=AP,DAP=60,所以ADP是等边三角形。方法指导等边三角形各边相等,各角都是60,一边绕顶点旋转与另一边重合可以得出相等的边和相等的角,结合旋转的性质,是解决此题的关键,此类问题应寻找特殊对应点,从而找出对应角的变化,解决问题。类题突破2 如图,在正方形ABCD中,E为DC边上一点,连接BE,将BCE绕点C按顺时针方向旋转90,得到DCF,连接EF,若BEC=60,则EFD的度数为( )A.10 B.15 C.20 D.25思路图示 由于DCF 是BCE旋转得到的,答案 B探究点3 旋转作图情景激疑观察课本图23.1-9,你能说出这些美丽的图案是怎样得到的吗?你会画一个图形旋转后的图形吗?知识讲解(1)旋转图形的作法:根据旋转的性质可知,对应角都相等,都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形。(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角、旋转方向、旋转中心,其中任一元素不同,位置就不同,但得到的图形全等.典例剖析例3 如图(1),ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,并写出简要作法。解析 本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向。显然,遵时针或顺时针旋转都符合要求,一般我们选择小于180的旋转角为宜,故本题选择的旋转方向为顺时针方向。已知一对对应点和旋转中心,很容易确定旋转角。如图(2),连接QA、OD,则AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可。答案 (1)连接OA、OB、OC、OD;(2)分别以OB、OC为边作BOM=CON=AOD;(3)分别截取OE=OB,OF=OC;(4)依次连接DE、EF、FD,即DEF就是所求的三角形,如图(2)所示。方法指导作图的关键在于找到对应点,不同的题目给出的条件不同,所以找对应点的方法也就不一样,此题给出了A与D是对应点,根据性质就可以知道旋转角,结合旋转作图的方法,作出图形。类题突破3 已知四边形ABCD,你能作出它旋转100后的图形吗?试一试.答案 略.点拨 因题目要求宽泛,所以每个同学要先确定旋转中心,再确定旋转方向,才能画图,所画出的图形也不同,同学们可以交流,以加深对旋转角、旋转中心、旋转方向这三个因素对旋转影响的理解。重点难点重难点1 旋转的概念及性质的应用(1)旋转和平移、轴对称一样也是一种图形变换,它是图形围绕某一点旋转一定角度,因而旋转中心、旋转角、旋转方向、图形全等是判断旋转的关键。(2)旋转的性质是整节的关键,它是整个内容应用的基础.其中有关旋转角的题目较多、辨别旋转角的关键是:找出对应点、旋转中心就可以判断出旋转角。确定旋转角是求角的度数问题的关键,也是旋转作图的基础。(3)应用时应注意旋转具有方向性(顺时针和逆时针),必须注意这点,考虑两种可能。例1 如图可以看作是由一个等腰直角三角形旋转若干次而形成的,则每次旋转的度数是( )A.90 B.60 C.45 D.30解析 根据旋转的性质并结合一个周角是360求解。答案 C类题突破1 如图,把正方形ABCD绕点A按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H,试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.答案 连接AH,由正方形ABCD和旋转的性质可知,AD=AG,AD=AB,AG=AB.G=B=90,AH=AH,AGHABH(HL),HG=HB.点拨 连接AH构造全等三角形,寻找全等的条件,AG=AB,G=B=90,AH=AH,由HL公理,可证出全等,得出结论。方法提示(1)根据图形特点,构造全等三角形。(2)利用旋转的性质,结合正方形的性质,寻找等量关系,证明全等,从而得出结论。重难点2 旋转作图的应用(1)旋转作图是旋转的落脚点,很多美丽的图案是由一个简单图形通过旋转变化而来的.利用旋转设计图案在现实生活中很常见。(2)作旋转图形的关键在于运用旋转的性质找到对应点,旋转过程中所有旋转角都相等,对应线段相等,所以通过作等角,再截取相等线段的方法找对应点,顺次连接对应点就能得到已知图形旋转后的图形。(3)旋转中心、旋转角、旋转方向是旋转作图的三个必要条件,只有在它们一定的情况下,图形才是唯一的.否则有一个条件不固定就可以作多个图形,但所作的图形都全等。例2 己知:如下图,ABC和三角形外一点O,作出ABC关于O点顺时针旋转110的旋转图形。解析 作图的关键在于找到A、B、C的对应点D、E、F,根据旋转的性质,连接AO,在AO的右侧作110的角,在角的另一边上截取OD=OA,则点D就是A的对应点,同样作出B、C的对应点E、F,顺次连接DE、EF、FD得到的三角形即为所求的三角形。答案 (1)连接AO,在AO的右侧作AOM=110,在OM上截取OD=OA,则点D就是A的对应点。(2)同样方法作出B、C的对应点E、F,顺次连接DE、EF、FD得到的三角形即为所求的三角形。方法提示所有关于图形变换(轴对称、平移、旋转)的方法都相似,关键在于找出对应点,旋转作图就是结合旋转的性质,找出符合条件的对应点,顺次连接即可得所求图形。类题突破2 如图(1),线段AB绕点O旋转了一个角度后,成为线段CD,由于不小心,点O被擦去了,你能找到点O的位置吗?答案 (1)连接AC、BD;(2)分别作AC、BD的垂直平分线,两线相交于点O,点O即为所求的旋转中心.如图(2)所示。点拨 由于对应点到旋转中心的距离相等,即AO=CO,BO=DO,因此点O在线段AC的垂直平分线上,也在线段B即的垂直平分线上,故点O是线段AC的垂直平分线与BD的垂直平分线的交点.方法提示由此可以推广,对于任意旋转图形,我们都可以找到两对合适的对应点,连接后作它们的垂直平分线,交点即是旋转中心,这与下节将学习的找中心对称图形的旋转中心的方法不同。易错指导易错点1 混淆旋转变换与平移变换例1 如图所示的图形由四个能够完全重合的等腰直角三角形拼成,认真观察后,回答下列问题.(1)图中有哪些三角形可以由三角形旋转得到?(2)图中有哪些三角形可以由三角形平移得到?错解 (1)三角形都可以由三角形旋转得到.(2)三角形可以由三角形平移得到.错因分析 旋转变换与平移变换都没有改变图形的大小和形状,只是改变了位置,所以很容易混淆。正解 (1)三角形可由三角形绕点B顺时针旋转90得到,三角形可由三角形绕点F逆时针旋转90得到.(2)三角形可由三角形平移得到。纠错心得 旋转变换由三个条件决定,即旋转中心、旋转方向、旋转角度,三者缺一不可.易错点2 对旋转的特征理解不透彻例2 图(1)所示,把AOB绕点O逆时针旋转45,画出旋转后错解 如图(3)所示,AOB即为所求。错因分析 不能准确理解旋转方向及旋转角的含义而导致错误。正解 如图(2)所示,AOB即为所求。纠错心得 在旋转过程中,对应边所夹的角即为旋转角,所以在画图中,重点是找到对应边。易错点3 旋转方向不确定时,没有进行分类讨论例3 在ABC中,B=45,C=60,将ABC绕点A旋转30后与AB1C1重合,求BAC1的度数。错解 当ABC绕点A逆时件旋转30时(如图(1)所示),B=45,C=60,BAC=75.BAC1=BAC+CAC1=75+30=105.错因分析 只考虑了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微生物群分析-洞察及研究
- 物流公司财务管理制度
- 物流平台运营管理制度
- 物流设备配送管理制度
- 物流运输配送管理制度
- 物理安全事件管理制度
- 2025-2030年中国智慧铁路行业市场深度调研及发展前景与投资研究报告
- 2025-2030年中国无变压器UPS行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国室外云台摄像机行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国婚介服务行业市场深度调研及前景趋势与投资研究报告
- 舰艇损害管制与舰艇损害管制训练
- 中职语文职业模块1.2《宁夏闽宁镇:昔日干沙滩-今日金沙滩》教案
- 《天文学上的旷世之争》课件
- 2024年全国财会知识竞赛考试题库(浓缩500题)
- 【课件】庆祝新中国成立75周年主题班会课件
- GB/T 44336-2024素肉制品术语与分类
- 机械手自动操作控制的程序设计
- 请人维修屋顶安全协议书
- 2024年青海省中考生物地理合卷试题(含答案解析)
- 银屑病发加重因素课件
- 光伏发电站集中监控系统通信及数据标准
评论
0/150
提交评论