已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高 等 代 数,6.2 线性空间的定义与简单性质,第二节 线性空间的定义与简单性质,第六章 线性空间 Linear Space,6.2 线性空间的定义与简单性质,一、线性空间的概念,定义 1 设 V 是一个非空集合 , P 是一个数域 .,在集合 V 的元素之间定义了一种代数运算,叫做,加法;,这就是说,给出了一个法则,对于 V 中任,意两个元素 与 ,在 V 中都有唯一的一个元素, 与它们对应,称为 与 的和,记为 = + .,在数域 P 与集合 V 的元素之间还定义了一种运算 ,叫做数量乘法;,这就是说,对于数域 P 中任一,数 k 与 V 中任一元素 ,在 V 中都有唯一的一个,6.2 线性空间的定义与简单性质,元素 与它们对应,称为 k 与 的数量乘积,记, = k .,如果加法与数量乘法满足下述规则,那,么 V 称为数域 P 上的线性空间.,加法满足下面四条规则:,1) ;,2) ( ) ( );,3) 在 V 中有一个元素 0,对于 V 中任一元素, 都有 + 0 = ,(具有这个性质的元素 0 称为 V 的零元素) ;,6.2 线性空间的定义与简单性质,4) 对于 V 中每一个元素 ,都有 V 中的元素, ,使得, + = 0,( 称为 的负元素) .,数量乘法满足下面两条规则:,5) 1 = ;,6) k( l ) = ( kl ) .,数量乘法与加法满足下面两条规则:,7) ( k + l ) = k + l ;,8) k( + ) = k + k .,6.2 线性空间的定义与简单性质,在以上规则中,k , l 表示数域 P 中的任意数 ;, , , 等表示集合 V 中任意元素.,线性空间的元素也称为向量.,当然,这里所谓,向量比几何中所谓向量的涵义要广泛得多.,线性空,间有时也称为向量空间.,一般用小写的希腊字母, , , , 表示线性空间 V 中的元素,用小写的,拉丁字母 a, b, c, 表示数域 P 中的数.,6.2 线性空间的定义与简单性质,注 向量空间的定义可简单记为 “1128 ” ,即一个数域 P,这是基础域; 一个集合; 两个运算,又叫做线性运算;八条规则,其中前四条是加法的运算律,这时称对加法做成一个加群,第五、六条是数量乘法算律, 最后两条是分配律,表示两种运算之间的联系.,6.2 线性空间的定义与简单性质,例 1 在解析几何中, 平面或空间中一切向量组成的集合 V, 对于向量的加法及实数与向量的乘法, 构成实数域上的一个线性空间.,例 3 全体定义在区间 a,b上的连续函数组成的集合V, 对于函数的加法及实数与连续函数的乘法, 构成实数域上的一个线性空间. 用 C a,b 表示.,例 2 全体 n 维实向量组成的集合 V, 对于向量的加法及实数与向量的乘法, 构成实数域上的一个线性空间.,6.2 线性空间的定义与简单性质,例 4 数域 P 上一元多项式环 P x , 按通常的多项式加法和数与多项式的乘法,构成数域 P 上的一个线性空间.,如果只考虑其中次数小于 n 的多项式,再添上零多项式也构成数域 P 上的一个线性空间,用 P x n 表示.,但是,数域 P 上的 n 次多项式集合对同样的运算不构成线性空间,因为两个 n 次多项式的和可能不是 n 次多项式.,6.2 线性空间的定义与简单性质,例 5 全体数域 P 上的 m n 矩阵组成的集合,V,按矩阵的加法和数与矩阵的数量乘法,构成数,域 P 上的一个线性空间,用 P m n 表示.,例 6 全体实函数,按函数的加法和数与函数,的数量乘法,构成实数域上的一个线性空间.,例 7 数域 P 按照本身的加法与乘法,即构成,自身上的一个线性空间.,6.2 线性空间的定义与简单性质,例 8 全体数域 P 上的 2 维向量组成的集合V ,定义数与向量的数量乘法如下:,k (a, b) = ( ka,0) ,对于通常的向量加法及以上定义的数与向量的数量乘法不构成数域 P 上的线性空间.,事实上 , 当 b0 时 1 (a, b) = ( 1a,0) = ( a,0) (a, b) .,6.2 线性空间的定义与简单性质,注 例 8 中集合 V 满足线性空间定义中的其他七条公理, 可见第五条虽然比较简单, 但是不可由其他七条推出., 在 8 条公理中只有第一条加法满足交换律不是独立的.,证明 2( )2 2 (11) (11) (1 1 )(1 1 )( )( ) ( ) ,6.2 线性空间的定义与简单性质,2( ) (11)( ) ( )( ) ( ) , .,证毕,6.2 线性空间的定义与简单性质,二、线性空间的简单性质,1. 零向量是唯一的.,证明,假设 01,02 是线性空间 V 中的两个零,向量.,于是,01 = 01 + 02 = 02 .,证毕,故零向量是唯一的.,6.2 线性空间的定义与简单性质,2. 任意向量的负向量是唯一的.,假设 有两个负向量 与 ,, + = 0, + = 0 .,那么,证毕,向量 的负向量记为 - .,证明,则,= + 0,= .,= + ( + ),=( + )+ ,= 0 + ,利用负向量,定义减法如下:, - = + ( - ) .,6.2 线性空间的定义与简单性质,3. 0 = 0 ; k0 = 0 ; (-1) = - .,证明, + 0,= 1 + 0,= (1 + 0),= 1,0 = 0 .,(-1) +,= (-1) + 1,=(-1) + 1,= 0 =0 ,所以,(-1) = - .,所以,证毕,= .,所以,k0 + k,= k (0 +),= k,k0 =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年家居建材行业家居智能化技术应用研究报告及未来发展趋势预测
- 2025年互联网与信息技术继续教育AI生成内容版权保护行业协会AI生成内容版权自律考核试卷
- C1-8卫生院公共卫生回购协议
- 2025年物流行业从业人员碳意识提升效果评估合规考核试卷
- 2025年航空航天行业无人机应用案例研究报告及未来发展趋势预测
- 2026中材锂膜有限公司校园招聘考试笔试备考题库及答案解析
- 2026年中国铁路郑州局集团有限公司招聘普通高校毕业生1288人(二)笔试考试备考题库及答案解析
- 2025甘肃兰州建投金城文化旅游有限公司招聘3人考试笔试参考题库附答案解析
- 2025广东东莞市道滘医院招聘纳入岗位管理编制外人员12人笔试考试参考题库及答案解析
- 2025湖南长沙联合白金人力资源顾问有限公司某国企外包员工(产品经理)招聘公1人告考试笔试参考题库附答案解析
- 期中检测试卷(试题)-2024-2025学年数学人教版五年级上册
- 2024年全国职业院校技能大赛中职(企业经营沙盘模拟赛项)考试题库-下(多选、判断题)
- 2024-2030年肠粉行业市场发展分析及发展前景与投资机会研究报告
- HG∕T 2729-2012 硫化橡胶与薄片摩擦系数的测定 滑动法
- 国家中医药管理局发布的406种中医优势病种诊疗方案和临床路径目录
- 2024年贵州省护士岗位技能竞赛操作评分标准
- (高清版)JGT 225-2020 预应力混凝土用金属波纹管
- 心电图进修汇报
- 循证医学智慧树知到期末考试答案章节答案2024年广西中医药大学
- 人工智能辅助治疗技术管理规范
- 2024届高考地理二轮复习微专题-锋及锋的概念延伸题型汇
评论
0/150
提交评论