




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,二、微分运算法则,三、微分在近似计算中的应用,*四、微分在估计误差中的应用,第五节,一、微分的概念,函数的微分,第二章,2,一、微分的概念,引例: 一块正方形金属薄片受温度变化的影响,问此薄片面积改变了多少?,设薄片边长为 x , 面积为 A , 则,面积的增量为,关于x 的线性主部,故,当 x 在,取,变到,边长由,其,3,的微分,定义: 若函数,在点 的增量可表示为,( A 为不依赖于x 的常数),则称函数,而 称为,记作,即,定理: 函数,在点 可微的充要条件是,即,在点,可微,4,定理 : 函数,证: “必要性”,已知,在点 可微 ,则,故,在点 可导,且,在点 可微的充要条件是,在点 处可导,且,即,5,定理 : 函数,在点 可微的充要条件是,在点 处可导,且,即,“充分性”,已知,即,在点 可导,则,6,说明:,时 ,所以,时,很小时, 有近似公式,与,是等价无穷小,当,故当,7,微分的几何意义,当 很小时,则有,从而,导数也叫作微商,切线纵坐标的增量,自变量的微分,记作,记,8,例如,基本初等函数的微分公式 (见 P116表),又如,9,二、 微分运算法则,设 u(x) , v(x) 均可微 , 则,(C 为常数),分别可微 ,的微分为,微分形式不变,5. 复合函数的微分,则复合函数,10,例1.,求,解:,11,例2. 设,求,解: 利用一阶微分形式不变性 , 有,例3. 在下列括号中填入适当的函数使等式成立:,说明: 上述微分的反问题是不定积分要研究的内容.,数学中的反问题往往出现多值性.,注意:,12,数学中的反问题往往出现多值性 , 例如,注意:,13,三、 微分在近似计算中的应用,当,很小时,使用原则:,得近似等式:,14,特别当,很小时,常用近似公式:,很小),证明:,令,得,15,的近似值 .,解: 设,取,则,例4. 求,16,的近似值 .,解:,例5. 计算,17,例6. 有一批半径为1cm 的球 ,为了提高球面的光洁度,解: 已知球体体积为,镀铜体积为 V 在,时体积的增量,因此每只球需用铜约为,( g ),用铜多少克 .,估计一下, 每只球需,要镀上一层铜 ,厚度定为 0.01cm ,18,*四、 微分在估计误差中的应用,某量的精确值为 A ,其近似值为 a ,称为a 的绝对误差,称为a 的相对误差,若,称为测量 A 的绝对误差限,称为测量 A 的相对误差限,19,误差传递公式 :,已知测量误差限为,按公式,计算 y 值时的误差,故 y 的绝对误差限约为,相对误差限约为,若直接测量某量得 x ,20,例7. 设测得圆钢截面的直径,测量D 的,绝对误差限,欲利用公式,圆钢截面积 ,解:计算 A 的绝对误差限约为,A 的相对误差限约为,试估计面积的误差 .,计算,(mm2),21,内容小结,1. 微分概念,微分的定义及几何意义,可微,可导,2. 微分运算法则,微分形式不变性 :,( u 是自变量或中间变量 ),3. 微分的应用,近似计算,估计误差,22,思考与练习,1. 设函数,的图形如下, 试在图中标出的点,处的,及,并说明其正负 .,23,2.,24,5. 设,由方程,确定,解:,方程两边求微分,得,当,时,由上式得,求,则,25,作业,P123 1 ; 3 (4) , (7) , (8) , (9) , (1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年社区工作者职业资格考试真题模拟与高分策略押题卷及详解
- 信息管理系统设计
- 智能底盘基础知识培训课件
- 2025江苏苏州高新区镇湖街道招聘村(社区)工作人员笔试考前自测高频考点模拟试题及答案详解(典优)
- 2025福建漳州市诏安县财政投资评审中心招募见习人员1人模拟试卷及一套答案详解
- 2025广东肇庆市怀集县卫生健康局赴高校招聘卫生专业技术人员74人模拟试卷及1套参考答案详解
- 2025湖南株洲市公共交通集团有限责任公司公交驾驶员、ART站务员招聘考前自测高频考点模拟试题及答案详解(必刷)
- 2025年嘉兴市秀洲区王江泾医院公开招聘编外合同制人员5人考前自测高频考点模拟试题有答案详解
- 孕婴产品市场分析与发展方向
- 2025甘肃省大数据中心招聘8人考前自测高频考点模拟试题参考答案详解
- 寻乌县2025年公开招聘社区工作者【10人】考试参考试题及答案解析
- 高校财会监督与预算绩效管理协同效能优化研究
- 输液室理论知识培训课件
- 协会转让接手协议书模板
- 家长学校综合测试题库与评分标准
- 加油站计量业务知识培训课件
- 公安矛盾纠纷化解课件
- 看板管理管理办法
- 2025至2030镍氢电池隔膜行业市场发展现状及竞争格局与投资价值报告
- 造林质量管理办法
- 冠心病人饮食健康管理
评论
0/150
提交评论