



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲 利用导数证明不等式1(2019河南豫南九校联考)设定义在(0,)上的函数f(x)的导函数f(x)满足xf(x)1,则()Af(2)f(1)ln 2Bf(2)f(1)1Df(2)f(1)1f(x)(ln x),即f(x)(ln x)0.令F(x)f(x)ln x,则F(x)在(0,)上单调递增,故f(2)ln 2f(1)ln 1,即f(2)f(1)ln 2.2若0x1x2ln x2ln x1Bex2ex1x1ex2Dx2ex1x1ex2解析:选C.令f(x),则f(x).当0x1时,f(x)0,即f(x)在(0,1)上单调递减,因为0x1x21,所以f(x2)f(x1),即x1ex2,故选C.3已知函数f(x)aexln x1.(1)设x2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a时,f(x)0.解:(1)f(x)的定义域为(0,),f(x)aex.由题设知,f(2)0,所以a.从而f(x)exln x1,f(x)ex.当0x2时,f(x)2时,f(x)0.所以f(x)在(0,2)单调递减,在(2,)单调递增(2)证明:当a时,f(x)ln x1.设g(x)ln x1,则g(x).当0x1时,g(x)1时,g(x)0.所以x1是g(x)的最小值点故当x0时,g(x)g(1)0.因此,当a时,f(x)0.4(2019高考全国卷)已知函数f(x)ln x.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线yln x在点A(x0,ln x0)处的切线也是曲线yex的切线解:(1)f(x)的定义域为(0,1)(1,)因为f(x)0,所以f(x)在(0,1),(1,)单调递增因为f(e)10,所以f(x)在(1,)有唯一零点x1,即f(x1)0.又00)若a0,则f(x)0,f(x)在(0,)上单调递增;若a0,则当0x0,当x时,f(x)0,所以只需证f(x)2e,当ae时,由(1)知,f(x)在(0,1)上单调递增,在(1,)上单调递减,所以f(x)maxf(1)e.记g(x)2e(x0),则g(x),所以当0x1时,g(x)1时,g(x)0,g(x)单调递增,所以g(x)ming(1)e.综上,当x0时,f(x)g(x),即f(x)2e,即xf(x)ex2ex0.法二:由题意知,即证exln xex2ex2ex0,从而等价于ln xx2.设函数g(x)ln xx2,则g(x)1.所以当x(0,1)时,g(x)0,当x(1,)时,g(x)0,故g(x)在(0,1)上单调递增,在(1,)上单调递减,从而g(x)在(0,)上的最大值为g(1)1.设函数h(x),则h(x).所以当x(0,1)时,h(x)0,故h(x)在(0,1)上单调递减,在(1,)上单调递增,从而h(x)在(0,)上的最小值为h(1)1.综上,当x0时,g(x)h(x),即xf(x)ex2ex0.6已知函数f(x)ln(xa)x2x在x0处取得极值(1)求实数a的值;(2)证明:对于任意的正整数n,不等式2ln(n1)都成立解:(1)因为f(x)2x1,又因为x0为f(x)的极值点所以f(0)10,所以a1.经检验,a1时在x0处取得极值,所以a1.(2)证明:由(1)知f(x)ln(x1)x2x.因为f(x)2x1.令f(x)0得1x0.当x变化时,f(x),f(x)变化情况如下表x(1,0)0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房租赁合同范本及法律风险提示
- 志愿者管理及激励机制创新方案
- 社会实践活动方案设计与总结
- 四年级数学全面运算律教学方案
- 股权质押合同风险防范与管理
- 职场新人入职培训总结及提升方案
- 便利店合伙经营风险防范协议
- 基金项目财务管理规范指南
- 阿里巴巴企业价值链深度分析报告
- 仓库叉车安全操作规程指南
- 银行职业介绍课件
- 辽宁省盘锦市大洼区田家学校2024-2025学年九年级上学期第四次质量检测语文试卷
- 广东省惠州市联考2024-2025学年上学期12月教学质量阶段性诊断八年级数学试卷(无答案)
- 工程结算协议书
- 砖砌围墙施工方案
- 2024-2030年中国痘痘贴行业营销动态及消费需求预测研究报告
- 《人工智能导论》(第2版)高职全套教学课件
- 疑问句(课件)六年下册英语人教PEP版
- 视力残疾康复服务规范
- HG T 3690-2022 工业用钢骨架聚乙烯塑料复合管
- 医院医保科绩效考核标准
评论
0/150
提交评论