路桥区三中2018-2019学年上学期高二数学12月月考试题含解析.doc_第1页
路桥区三中2018-2019学年上学期高二数学12月月考试题含解析.doc_第2页
路桥区三中2018-2019学年上学期高二数学12月月考试题含解析.doc_第3页
路桥区三中2018-2019学年上学期高二数学12月月考试题含解析.doc_第4页
路桥区三中2018-2019学年上学期高二数学12月月考试题含解析.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷路桥区三中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形2 定义运算:例如,则函数的值域为( )A B C D3 执行如图所示的程序,若输入的,则输出的所有的值的和为( )A243B363C729D1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力4 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=55 椭圆=1的离心率为( )ABCD6 已知函数f(x)=x3+mx2+(2m+3)x(mR)存在两个极值点x1,x2,直线l经过点A(x1,x12),B(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是( )A0,2B0,3C0,)D0,)7 集合,是的一个子集,当时,若有,则称为的一个“孤立元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个A.4 B. 5 C.6 D.78 若点O和点F(2,0)分别是双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为( )ABCD9 已知直线l1 经过A(3,4),B(8,1)两点,直线l2的倾斜角为135,那么l1与l2( )A垂直B平行C重合D相交但不垂直10半径R的半圆卷成一个圆锥,则它的体积为( )AR3BR3CR3DR311下列函数在其定义域内既是奇函数又是增函数的是()A B C D12若满足约束条件,则当取最大值时,的值为( )A B C D二、填空题13将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax22bx+1在(,2上为减函数的概率是14如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想15对于集合M,定义函数对于两个集合A,B,定义集合AB=x|fA(x)fB(x)=1已知A=2,4,6,8,10,B=1,2,4,8,12,则用列举法写出集合AB的结果为16直线2x+3y+6=0与坐标轴所围成的三角形的面积为17在矩形ABCD中,=(1,3),则实数k=18已知,则不等式的解集为_【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力三、解答题19已知ABC的顶点A(3,2),C的平分线CD所在直线方程为y1=0,AC边上的高BH所在直线方程为4x+2y9=0(1)求顶点C的坐标;(2)求ABC的面积20(理)设函数f(x)=(x+1)ln(x+1)(1)求f(x)的单调区间;(2)若对所有的x0,均有f(x)ax成立,求实数a的取值范围 21已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:22cos4sin+6=0(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求C1MN的面积 22甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望23在极坐标系内,已知曲线C1的方程为22(cos2sin)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数)()求曲线C1的直角坐标方程以及曲线C2的普通方程;()设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值24已知函数f(x0=(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f(x1)路桥区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah2rh当a=2r时截面面积最大,即轴截面面积最大,故A正确对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,截面三角形SAB的高为,截面面积S=故截面的最大面积为故B错误对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题2 【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 3 【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D4 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法5 【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c=2;则椭圆的离心率为e=,故选D【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分6 【答案】C【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f(x)=x2+2mx+2m+3,由题意可得,判别式0,即有4m24(2m+3)0,解得m3或m1,又x1+x2=2m,x1x2=2m+3,直线l经过点A(x1,x12),B(x2,x22),即有斜率k=x1+x2=2m,则有直线AB:yx12=2m(xx1),即为2mx+y2mx1x12=0,圆(x+1)2+y2=的圆心为(1,0),半径r为则g(m)=dr=,由于f(x1)=x12+2mx1+2m+3=0,则g(m)=,又m3或m1,即有m21则g(m)=,则有0g(m)故选C【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题7 【答案】C【解析】试题分析:根据题中“孤立元素”定义可知,若集合B中不含孤立元素,则必须没有三个连续的自然数存在,所有B的可能情况为:,共6个。故选C。考点:1.集合间关系;2.新定义问题。 8 【答案】B【解析】解:因为F(2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力9 【答案】A【解析】解:由题意可得直线l1的斜率k1=1,又直线l2的倾斜角为135,其斜率k2=tan135=1,显然满足k1k2=1,l1与l2垂直故选A10【答案】A【解析】解:2r=R,所以r=,则h=,所以V=故选A11【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B12【答案】D【解析】考点:简单线性规划二、填空题13【答案】 【解析】解:由题意,函数y=ax22bx+1在(,2上为减函数满足条件第一次朝上一面的点数为a,第二次朝上一面的点数为b,a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种(a,b)的取值共36种情况所求概率为=故答案为:14【答案】15【答案】1,6,10,12 【解析】解:要使fA(x)fB(x)=1,必有xx|xA且xBx|xB且xA=6,101,12=1,6,10,12,所以AB=1,6,10,12故答案为1,6,10,12【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题16【答案】3 【解析】解:把x=0代入2x+3y+6=0可得y=2,把y=0代入2x+3y+6=0可得x=3,直线与坐标轴的交点为(0,2)和(3,0),故三角形的面积S=23=3,故答案为:3【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题17【答案】4 【解析】解:如图所示,在矩形ABCD中,=(1,3),=(k1,2+3)=(k1,1),=1(k1)+(3)1=0,解得k=4故答案为:4【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目18【答案】【解析】函数在递增,当时,解得;当时,解得,综上所述,不等式的解集为三、解答题19【答案】 【解析】解:(1)由高BH所在直线方程为4x+2y9=0, =2直线ACBH,kACkBH=1,直线AC的方程为,联立点C的坐标C(1,1)(2),直线BC的方程为,联立,即点B到直线AC:x2y+1=0的距离为又,【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题20【答案】 【解析】解:(1)由f(x)=ln(x+1)+10得,f(x)的增区间为,减区间为(2)令g(x)=(x+1)ln(x+1)ax“不等式f(x)ax在x0时恒成立”“g(x)g(0)在x0时恒成立”g(x)=ln(x+1)+1a=0x=ea11当x(1,ea11)时,g(x)0,g(x)为减函数当x(ea11,+)时,g(x)0,g(x)为增函数“g(x)0在x0时恒成立”“ea110”,即ea1e0,即a10,即a1故a的取值范围是(,1 21【答案】 【解析】解:(1),将其代入C1得:,圆C1的直角坐标方程为:由直线l1:(t为参数),消去参数可得:y=x,可得(R)直线l1的极坐标方程为:(R)(2),可得,【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题 22【答案】 【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=P(X=0)=(1)(1)=;P(X=1)=;P(X=2)=X的分布列为:X 0 1 2PEX=0+1+2=【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型解题时要认真审题,仔细解答,注意概率知识的灵活运用23【答案】 【解析】【专题】计算题;直线与圆;坐标系和参数方程【分析】()运用x=cos,y=sin,x2+y2=2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小再由点到直线的距离公式和勾股定理,即可得到最小值【解答】解:()对于曲线C1的方程为22(cos2sin)+4=0,可化为直角坐标方程x2+y22x+4y+4=0,即圆(x1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y15=0()可经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论