智能家居之虚拟管家系统设计【物联网开题报告外文翻译说明书论文】.zip
收藏
资源目录
压缩包内文档预览:(预览前15页/共35页)
编号:22399478
类型:共享资源
大小:5.21MB
格式:ZIP
上传时间:2019-10-16
上传人:小***
认证信息
个人认证
林**(实名认证)
福建
IP属地:福建
50
积分
- 关 键 词:
-
物联网开题报告外文翻译说明书论文
设计开题报告
物联网智能家居
智能家居系统设计开题报告
物联网智能家居开题报告
论文开题报告
智能家居系统【
智能家居系统
智能家居开题报告
智能家居系统设计
- 资源描述:
-
智能家居之虚拟管家系统设计【物联网开题报告外文翻译说明书论文】.zip,物联网开题报告外文翻译说明书论文,设计开题报告,物联网智能家居,智能家居系统设计开题报告,物联网智能家居开题报告,论文开题报告,智能家居系统【,智能家居系统,智能家居开题报告,智能家居系统设计
- 内容简介:
-
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 本课题研究的是智能家居之虚拟管家系统设计,学生为了完成本毕业课题的任务,进行需求分析、可行性分析,使学生能够对虚拟管家系统软件开发流程有深刻的了解,结合所学的专业知识,提出符合实际应用的解决方案。通过本次毕业设计的智能家居之虚拟管家系统,学生掌握虚拟管家实现的技术,系统设计的项目流程;学会查阅资料的方法和阅读一般专业英文文献,为以后进行独立设计时查阅资料奠定基础。通过本课题能对智能家居之虚拟管家系统的应用开发以及实际的项目开发有进一步的了解,熟悉并掌握智能家居之虚拟管家系统设计所涉及的软件和硬件设备。通过本次毕业设计,锻炼学生综合分析问题、解决问题、编程的能力;通过论文的撰写锻炼学生按规范要求完成论文的能力。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 智能家居具有传统的居住功能,兼备建筑、网络通信、信息家电、设备自动化,提供全方位的信息交互功能,为各种能源费用节约资金。智能家居通过物联网技术将家中的各种设备连接到一起,提供家电控制、照明控制、电话远程控制、室内外遥控、防盗报警、环境监测、暖通控制、红外转发以及可编程定时控制等多种功能和手段。智能家居之虚拟管家系统设计首先应简要介绍智能家居网关服务系统组成、工作流程以及原理;然后实现网管服务发布和客户端调用网管服务;在此基础上实现虚拟管家系统,模拟管家说话,用户连入系统进行语音操作等功能。具体要求:(1)了解智能家居网关服务系统的结构组成、工作流程和设计原理;(2)掌握网关服务的调用方法;(3)实现智能家居管理的简单的语音识别及语音提示功能。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 本课题要求是设计智能家居之虚拟管家系统。简要介绍智能家居系统的构成与功能,引申出虚拟管家的作用及其相关系统功能实现。最终成果包括:各功能模块的设计,功能实现;设计说明书、源程序。符合学校本科论文撰写规范的论文和系统说明书。 4主要参考文献: 1杜坤坤,刘欣,解仑等.情感机器人M. 北京:机械工业出版社, 2012. 2刘修文. 物联网技术应用 智能家居M. 北京:机械工业出版社, 2015. 3黄贻培,陈帅华,周芳等基于WiFi通讯的智能家居系统J电子世界,2013(14):8282 4薛帅智能家居系统多协议网关的设计与实现D北京:北京邮电大学,2012 5周时伟,谢维波基于Android的智能家居终端设计与实现J微型机与应用,2012(14):1013 6王浩,浦灵敏主编. 物联网技术应用开发M. 北京:中国水利水电出版社, 2015. 7张丽静,郭禹伶,高志强,袁晓磊,李帅华基于Android平台的智能家居远程客户端设计J河北电力技术,2014(01):25-27 8王巍,黄晓丹.面向智能家居服务的拟人情感决策算法J.山东科技大学学报,2012(6):31-33. 9杜坤坤.面向智能家居的虚拟人交互方法与技术的研究D.北京:北京科技大学,2014. 10彭洪明.智能家居的体系结构及关键技术研究D.北京:北京交通大学,2012. 11 朱海霞,闻凯,陶静,季宇峰,乔焱.基于Android平台的语音智能控制家居系统J.中国新通信,2014,(9). 12乔平安. 物联网组网技术M. 北京:中国铁道出版社, 2013. 13周武.基于物联网智能家居发展分析J.信息技术与信息化,2015(2). 14王志良. 物联网技术综合实训教程M. 北京:机械工业出版社, 2014.04. 15钟科,陈向东智能家居服务网关的设计J通信技术,2012,45(08):65-67 16孙浩基于WiFi技术和Android系统的智能家居系统设计D中国矿业大学,2014. 17洪密.网络环境下智能家居的人性化交互系统的研究与实现D.北京:北京科技大学,2012. 18薛震南.基于物联网的智能家居研究D.南京:南京大学,2013. 19王朝华,陈德艳,黄国宏,童怀基于Android的智能家居系统的研究与实现明J计算机技术与发展,2012(06):225-228. 20吕显明,刘彦隆,王相国.基于物联网的智能家居系统设计J.电视技术,2013(24). 21 张进,邱越.适合老年人的智能家居设计J.设计,2014(9):31-32. 22彭洪明.智能家居的体系结构及关键技术研究D.北京:北京交通大学,2012. 毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:起 讫 日 期 工 作 内 容 2015.12.152016.01.02 撰写及修改开题报告、外文参考资料及译文、论文大纲并提交开题报告、外文参考资料及译文、论文大纲 2016.01.052016.04.02 拟定论文提纲或设计说明书(下称文档)提纲;提交基本完成的毕业设计创作成果以及文档的撰写提纲 2016.04.062016.04.10 中期检查(含毕业设计成果验收检查) 2016.03.202016.04.20 进行毕业设计文档撰写; 2016年4月20日定稿截止 2016.04.142016.05.08 1、学生进行毕业设计文档撰写。若是计算机软件开发类课题,需撰写不少于2000字的软件使用说明书; 2、5月1日前,做好答辩安排,学生回校进行答辨 3、2016年5月08日为学生毕业设计文档定稿截止日。 2016.05.092016.05.24 1、毕业设计答辩; 2、答辩未通过同学进行二次答辩; 3、5.16-5.29发布及报送毕业设计(论文)成绩;报送毕业设计(论文)信息表给教务处。 2016.05.162016.06.05 1、5月底前,根据答辩情况修改论文相关资料,并上传最终稿,上交纸质稿; 2、6月5日前完成毕业设计全套材料(含电子稿)提交(含网上提交)工作 所在专业审查意见:通过负责人: 2015 年 12 月18 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 本课题研是对智能家居的虚拟管家系统设计,当用户进入系统并连接网关,利用网关客户端与服务器交互,对智能家居系统中的家电设备进行操作,进行操作时,会有语言提示。在上世纪90年代物联网概念雏形已基本形成,至今通过20年的发展物联网技术已逐步深入到我们的生活当中。随着物联网技术的发展和人们对物质生活水平的要求的不断提高,人们对生活的安全、舒适、便捷等方面的要求也越来越高,人们对家居环境也提出了更高的要求,实现对家居设备的系统化、网络化和智能化控制已经成为家居环境未来的发展方向,由此“智能家居”的概念便应运而生。智能家居(Smart Home),是以家庭为最小设计单元,利用各种先进的技术和设施实现对家庭的综合性管理和控制,从而改善了人类的居住环境。和普通的住宅相比,智能家居具有传统的居住功能,兼备建筑、网络通信、信息家电、设备自动化,提供全方位的信息交互功能,为各种能源费用节约资金。自从世界上第一幢智能建筑1984年在美国出现后,从此越来越多的国内外研究者开始关注智能家居系统。在国际上,欧美、东南亚等一些较为发达的国家和地区陆续投入到智能家居研究之中,如加拿大、美国、欧洲、亚洲、澳大利亚、东南亚等国的智能家居系统已应用到千家万户,而且 Cisco、Intel、Nortel、Motorola、3eom、IBM、Eriesson 和 Panasonie 等技术团体近年来均努力开创各自的智能家居产品。在国内,智能家居产业的发展已有十余年的历史,国家和政府给予了很大的支持与帮助,企业家们陆续推出智能家居产品与方案。例如,清华同方推出的以家庭为核心致力于智能控制与信息服务的“e-Home”数字家园计划,海尔与微软推出以家用 PC 为控制中心对各种家电终端设备实现自动化控制“e家族”计划,以及由海尔与霍尼韦尔共同创建的智能家居示范项目青岛东城国际 U-Home。目前,智能家居的研究已经取得了很大的进步,而且智能家居系统也越来越完善,对于目前智能家居系统的研究可以从网络角度、人机交互角度以及能量角度进行分类。首先,对于智能家居网络的研究,例如基于物联网技术的家居网络服务,利用Zigbee无线传感器网络来采集家居内的环境、设备及人员信息,再由物联网网关将这些信息转发至互联网中的服务器,用户通过浏览器或客户端软件登录服务器便可以监控智能家居各个子系统的运行状况。但由于现有的智能家居系统大多基于单一的网络,例如有线以太网技术、无线蓝牙技术、无线Zigbee网络技术,不能满足人们日益增长的应用需求。而随着无线通信技术、计算机应用技术的飞速发展,无线通信技术为智能家居系统提供了部署更加便捷、成本更加低廉、性能更加稳定的系统,并且随着嵌入式系统技术的发展,嵌入式网关可以非常方便的实现多个网络之间的数据交换。嵌入式网关应该实现对多种协议的支持,如ZigBee协议、Internet协议、WIFI协议、蓝牙等。能够支持多种网络之间的数据交换,网关负责对数据进行交换和转发。其次,对于人机交互的研究,其主要包括语音识别技术、动作识别技术、安全访问认证技术以及用户接口技术。网关服务研究对于一个完整的智能家居系统来讲,还仅仅是个开始。对一个高水平智能的家居系统的研究,不能忽视了人的内在需求和行为和人机交互中的基本的一项原则一一和谐交互。“问题不在于智能机器能否有情感,而在于没有情感的机器能否实现智能”,这句源自美国的教授的话己经成为大多数研究智能机器的人们的座右铭,虚拟管家的概念应运而生。为了突出和谐交互,北京科技大学自动化学院,提出一种思路,在智能家居系统中,设计虚拟人作为整个系统的虚拟管家。从而使情感的交互就体现在虚拟人与用户之间的交互中。最后,对于智能家居系统的能量研究,其主要有能量管理以及节能研究等。2014年4月3日,电子科技学刊上刊载了伊朗德黑兰大学的一篇文章,提出了一种新型的基于家用插座的低成本、高性能的智能家庭网络解决方案,不仅最大限度地减少实施成本,还提供了一个高水平的操作简单的,可靠性、可行性、可扩展性、灵活性和其他性能领先的设计。智能家居提倡“以人为本”的全新居家生活体验,IHS分析师Bill Morelli分析师表示,考虑到成本因素,由一系列联网设备所组成的智能家居在短期内是一个比全能型机器人更加切实可行的目标。也就是说,短期内,虚拟管家的发展可能会更具潜力。参考文献:1.刘修文. 物联网技术应用 智能家居M. 北京:机械工业出版社, 2015.2.王浩,浦灵敏主编. 物联网技术应用开发M. 北京:中国水利水电出版社, 2015.3.黄贻培,陈帅华,周芳等基于WiFi通讯的智能家居系统J电子世界,2013(14):824.彭洪明.智能家居的体系结构及关键技术研究D.北京:北京交通大学,2012.5.王浩,浦灵敏主编. 物联网技术应用开发M. 北京:中国水利水电出版社, 2015.6.乔平安. 物联网组网技术M. 北京:中国铁道出版社, 2013.7.周武.基于物联网智能家居发展分析J.信息技术与信息化,2015(2).8.薛震南.基于物联网的智能家居研究D.南京:南京大学,2013.9.吕显明,刘彦隆,王相国.基于物联网的智能家居系统设计J.电视技术,2013(24).10.钟科,陈向东智能家居服务网关的设计J通信技术,2012,45(08):65-6711.张进,邱越.适合老年人的智能家居设计J.设计,2014(9):31-32.12.王志良. 物联网技术综合实训教程M. 北京:机械工业出版社, 2014.04.13.王朝华,陈德艳,黄国宏,童怀基于Android的智能家居系统的研究与实现J计算机技术与发展,2012(06):225-228. 14.孙浩基于WiFi技术和Android系统的智能家居系统设计D中国矿业大学,2014.15.周时伟,谢维波基于Android的智能家居终端设计与实现J微型机与应用,2012(14):10-1316.杜坤坤.面向智能家居的虚拟人交互方法与技术的研究D.北京:北京科技大学,2014.17.洪密.网络环境下智能家居的人性化交互系统的研究与实现D.北京:北京科技大学,2012.18.杜坤坤,刘欣,解仑等.情感机器人M.北京:机械工业出版社,2012.19.王 巍,黄晓丹.面向智能家居服务的拟人情感决策算法J.山东科技大学学报,2012(6):31-33.20.张丽静,郭禹伶,高志强,袁晓磊,李帅华基于Android平台的智能家居远程客户端设计J河北电力技术,2014(01):25-2721.朱海霞,闻凯,陶静,季宇峰,乔焱.基于Android平台的语音智能控制家居系统J.中国新通信,2014(9):13-17.22.S.M.T.Bathaee , A.Fereidunian , A.Khajeh Amiri Hagh ,H.Heydari .Design and Implementation of a Novel HomePlug-Based Solution for Low Cost and High Performance Smart Home NetworkingJ.电子科技学刊,2014(1):39-45.毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 智能家居之虚拟管家系统的网关服务系统应具备网关的所有智能家居的功能,分模块和高速运行智能家居管理系统,同时具有可扩展性,对新设备、新功能可以通过有线或无线的方式接入该系统。用户进入虚拟管家系统时,系统将进行自我介绍,并发出语言。如:“您好,我是您的虚拟管家小丽,很高兴为您服务。” 在利用网关客户端连接上服务器之后,虚拟管家将进行提示,“你好,客人,欢迎来到智能空间实验室。”接下来,用户可以发出指令,虚拟管家可以通过语音识别,从而控制系统的各项家电设备。本课题要解决的问题:(1)发布智能家居网关服务;(2)客户端调用网关服务;(3)实现虚拟管家系统,模拟管家说话,用户连入系统进行语音操作功能。设计方法:(1)使用IIS发布网站;(2)在Visual Studio 2010 里创建客户端实例;(3)在Visual Studio 2010编辑程序,添加语音合成功能。毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:该生认真阅读了一定的参考文献,对国内外文献综述较全面,综述内容适当 2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:智能家居之虚拟管家系统设计,涉及的知识点较多,课题深度和广度适中,工作量符合毕业设计要求,学生能完成毕业设计工作 3.是否同意开题: 同意 不同意 指导教师: 2016 年 01 月 10 日所在专业审查意见:同意 负责人: 2016 年 04 月 22 日毕 业 设 计(论 文)外 文 参 考 资 料 及 译 文 译文题目:Design and Implementation of a Novel HomePlug-Based Solution for Low Cost and High Performance Smart Home Networking学生姓名: 王丽娟 学号: 1205103013 专业: 物联网工程 所在学院: 智能科学与控制工程 指导教师: 徐楠 职称: 副教授 2015年 12 月 23 日说明:要求学生结合毕业设计(论文)课题参阅一篇以上的外文资料,并翻译至少一万印刷符(或译出3千汉字)以上的译文。译文原则上要求打印(如手写,一律用400字方格稿纸书写),连同学校提供的统一封面及英文原文装订,于毕业设计(论文)工作开始后2周内完成,作为成绩考核的一部分。Design and Implementation of a Novel HomePlug-Based Solution for Low Cost and High Performance Smart Home NetworkingS. M. T. Bathaee, A. Fereidunian, A. Khajeh Amiri Hagh, and H. HeydariAbstractAs the smart home is the end-point power consumer, it is the major part to be controlled in a smart micro grid. There are so many challenges for implementing a smart home system in which the most important ones are the cost and simplicity of the implementation method. It is clear that the major share of the total cost is referred to the internal controlling system network; although there are too many methods proposed but still there is not any satisfying method at the consumers point of view. In this paper, a novel solution for this demand is proposed, which not only minimizes the implementation cost, but also provides a high level of reliability and simplicity of operation; feasibility, extendibility, and flexibility are other leading properties of the design.Index Terms :Field programmable gate array; HomePlug network; intelligent control system; low cost; peak clipping; smart home1. IntroductionWith the rapid increase in the number of power subscribers and the subsequent increase in using fossil fuels power plants, environmental pollutants would be resulted inevitably. As the arguments of optimizing consumption are focused on governments plans, the need of distribution monitoring and control systems became more significant, which cannot be achieved without the infrastructures of a flexible smart network. On the other hand, the final consumers behavior plays a vital role in the consumption control and optimization, and changes in the final consumer pattern and optimizing consumption at the end-point of the network can yield useful results in the peak clipping argument. Therefore, in making a smart network, designing and implementing smart houses will be taken much more into account. One of the most important problems in designing a smart home is the total cost of the design which decides the propensity or lack of propensity of smart homes builders; on the other hand, from consumers viewpoint, a plan is acceptable which has the least cost, the highest ease in implementation and utilization, the highest efficiency, maximum reliability, and network security. The main share of the implementation cost and also the ease of performing a smart home design are connected to the type of internal network using in it. In this paper, a new idea for preparing the most suitable internal network infrastructure of a smart home with a comparison between common methods have been represented and it is shown that the proposed design is the most optimum method in terms of the implementation cost, performance, and utilization with the highest reliability and network security. In general, an energy control system of a smart home is divided into 4 major sections including the central processor server, internal communication network between the server and equipments, the user interface,and finally the external communication network for remote control of the internal system. Considering the point that the internal communication network determines the type and feature of the server is important because it shares the highest amount of cost in designing and implementing a smart home.2. Internal Communication NetworksThe internal communication network of the control system of a smart home is basically in two forms:wired and wireless; both of which are used currently and each has different types of advantages and disadvantages. The wired network includes Ethernet, universal serial bus (USB), EEE1394, Home Phoneline Networking Alliance (HomePNA), and HomePlug, and the wireless network includes wireless standard IEEE802.11, Bluetooth, HomeRF, ZigBee, and ultra wide band (UWB). The Ethernet and USB are designed as two types of well-known networks and are almost exploitable with a low cost; of course networks with an Ethernet platform require expensive modulus. On the other hand, to utilize them in an internal network of a smart home, we are required to do extra wiring. HomePNA is a network in which data transition is done by telephone lines and it is mostly used for Internet networks. While telephone wiring is not available for electric equipments in all points of the house, the need for rewiring is considered. The high cost and low bandwidth are of other disadvantages of this network. The IEEE1394 interface “ is a serial bus interface standard for high-speed communications and isochronous real-time data transfer”, and wide bandwidth and the ability of transferring huge amount of audio and video real-time data are the important properties of this interface. The cost of executing the network is low yet the data transfer range limit (about 4.5m) and the need of wiring are among its disadvantages. WiFi, Bluetooth, and UWB networks are comparable in terms of the range, reliable capabilities, network security, and low signal interference. But power consumption and price of WiFi network are higher than those of the two other types and the bandwidth of UWB network is wider than that of the two other; the quality of non-cross-talk in UWB network is comparable to wired networks. The application of these three networks will be optimum in computer networks where high volume of data is exchanged. HomeRF is a network with high accuracy of transfer but no cross talk of signals and no problem in passing through the barriers are of the dominant qualities of this network. The range of data transfer for this network is about 100 m in open space and 30 m in closed space, which seems to be suitable for the purposes of the smart home. But the high cost of modules required by such networks results in the pale role of it in implementing a smart home. In the meantime, ZigBee, and HomePlug, and or power line communications can be taken as suitable candidates for implementing smart home projects. The low cost, low power consumption, and low structural complexity and the range about 100 m are the characteristics of ZigBee. On the other hand, the low data rate of ZigBee network is one of the disadvantages of it. No need for wiring, accessibility at all points of a smart home, easy and fast installation (without any general changes in the inner structure of the houses), the extendibility and also the multipliable specialty are among the most important qualities of HomePlug networks.Since the data transfer system uses the power network lines as the data transfer platform,there will be no need for wiring costs as well as the arrangement and interior design of the houses. But the critical disadvantage of a HomePlug network is the high cost of a central server which outweighs many of its qualities. In glance at a variety of different networks used in implementing control system of a smart home, it is seen that each of them has advantages and disadvantages, so we cannot definitely reject any of them. In general, a control system ensures its flexibility and extendibility due to being free from extra wiring and alternatively using the low-cost strategies. But they may face low network security and some implementation with difficulties. However, the wired control system has less flexibility due to wiring uncontrollability, hence, they cannot be comparable to wireless networks. So a system which is a combination of wired and wireless networks will be the optimum network. This network must have characteristics like reliability, quick responsiveness and sustainability,feasibility of implementation, flexibility, and maximum extendibility with the lowest cost.3. Design Properties3.1 Low Power ConsumptionIn this design, with respect to the fact that all elements of the electronic section work at the DC voltage supply of 5 V and also all applied elements are of low power types, the power consumption of the whole structure is so low. Table 1 gives approximate information about the power consumption of different parts of the design. As it is seen, the power consumption of this system is so trivial, at the same time, if entering the sleep mode when they are not used, power consumption will be reduced to 20% of the usual amount.According to Table 1 and the data of 4, the consumption of one common programmable logic controller (PLC), which is used to implement a HomePlug system, is always more than 9 W (only for setting up a server without any load). Compared with the consumption of the proposed system, which is about 3W for the whole system with 10 loads controlled, the common PLC system is considered inefficient.3.2 Simplicity, Low Cost, and Small SizeRegarding using low power elements in different parts of the system and also simplifying the proposed structure, the final cost of implementation will be low. The high amount of cost, which is mainly because of the devices used to implement the infra structure of data transfer, is the only disadvantage of the HomePlug method in comparison with other methods for the implementation of a smart home, but it is conquered in the proposed structure. The sizes of different parts of this system (except the central server whose size is bigger because of the presence of the liquid crystal display (LCD) and keyboard) are less than 10 cm2, which provides the opportunity of implementation with large number loads.Table 1:Power dissipation of each partPart namePower dissipation(mW)NumbersServer(LCD and LEDs excluded)171Modulator SSR(while switching)12Controller & oscillator101Buffer & level shifter1081DetectorClipper200In number of loads undercontrolHigh-pass filter50Edge detector& controller10Total(for 10 loads to be controlled)2.8W *:Solid state relay3.3 ExtendibilityBecause the designed system is a complete communicational platform and the existing processor in the server can command the whole system separately, in case of need to any extension, only the programmable software should be changed and optimized without any hardware changes. For example, issues related to the home generation such as solar-cells (PV) and fuel-cell (FC), and whatever in which there is a need for sending extra information about switching on/off commands, can be attached to the system easily.3.4 Concurrent Process and Remote Controlling The server processor, which is field programmable gata arrays (FPGAs), processes all the information related to the sensors, user commands, connection to the computer, necessary processes, and commanding system at the same time and according to its vast capability, increasing the number of its processes with high speed is also possible. Meanwhile, user links to this structure is easily transferred by the Internet and cell phones, which provides remote control and monitoring.4. Proposed ArchitectureThe HomePlug platform has been always done by using a continuous-time system so that all tools under control and monitored are continuously connected to the power line and every message or command is placed on the power signal. In this method, due to the need for combining the power and electronic systems, the implementation is expensive and complex. In the proposed method named discrete-time system control (DTSC), mainly it is focused on the existence of only one signal (power or data signal) on the power line in every moment. In other words, when there is a need for sending data, the power is disconnected from the line and the electronic and communication systems put the data on the line, and then it hands the line to the power system. Therefore, in this way these two sections of electronic and power are isolated totally from each other and the electronic section would be implemented simply with a low cost. The overall structure of the proposed system is shown in Fig. 1. The different parts of the proposed system including the server, modulator, and detector are placed next to the advanced measuring system at the beginning of the line to the load. The dashed line in Fig. 1 indicates the data connection between the utility and the smart home system. Blocks L1 to Ln indicate the loads existing in a house, for each of which there is a detector to control the related load. In the rest of the paper, we will review the internal structure and the implementation procedure of each part.By the way, it is noticeable that in the proposed method, the smart home has been considered as a subsection of a smart micro grid. Thus discussions about the outside network are out of the scope of this paper.Fig. 1. Overall architecture.4.1 ServerThis part is designed to do the calculations and processes required for total evaluation of the system, receiving signals from the sensors, driving the modulator, saving information, as well as communicating the user by connecting to the computer and embedded interface, such as the LCD and keyboard. Regarding the importance of this section in terms of speed and accuracy of processing steps as well as the need of all processes to be concurrent, the central processor is selected as the FPGA type. FPGA is a kind of real-time processor, whose parallel processing capability and high speed feature are very suitable for continuously processing the complicated conditions and decision-making based on physical and training data. Based on the user orders and with the previous data set, this section automatically submits the essential orders to the modulator section and the orders will be submitted to the load, if necessary. Also, remote communications between the user and the smart home would be possible.4.2 ModulatorThis section is composed of a simple controller, a pulse generator with varying frequency, and a bi-stable switch. The controller disconnects the connection of loads to the power line for a sufficient short time calculated in Section 6 according to the order and information from the server, and puts the data signal on the line. This signal is a square wave with varying frequency and the frequency is determined based on the server command. The amplitude of the signal is between 0 to 12 V and is buffered using a one-stage voltage buffer and a level shifter. The frequency of the square-wave generator is variable between 1 kHz to 10MHz. Fig. 2 illustrates the overall schematic view of the switch section of the modulator. Since the response time of the switch is important in this section, two solid state relays (SSR) are applied. The solid state structure of this relays provides the possibility of passing high currents as well as the high speed switching possibility, hence there will not be any concerns regarding not-disconnection in inductive loads with high current inertia and inrush current while connecting heavy loads. Based on Fig. 2, commanded by the controller of modulator, one of the switches would always be connected and the state of the switch would change if any signal is going to be sent to the load.4.3 DetectorThis part is needed to control the loads in the smart home in the overall architecture as many as possible. Hence, the low cost and simplicity of the section are considered. Thus, a clipping circuit, a high-pass filter, an edge detector, a simple controller, and a simple switch are applied, and we will discuss each part briefly. Because of the large difference between the amplitudes of the power signal (220 V r.m.s.) and the data signal (12 V), joining two parts of them would not be possible and a clipping circuit has been used. And clearly using a power transformer scaling both signals equally is not suitable for this architecture. So a simple clipper using a Zener diode is employed to remove negative amplitudes and clip the positive ones at the breakdown voltage of the Zener diode. High power elements are not necessary, because the loads and the detector systems are parallel with each other and the load current does not flows throw the electronic parts, which lowering the implementation costs and the overall size of the electronic boards.Fig. 3 shows the overall structure of the detector part. After the clipping process, the signal enters a high-pass filter which eliminates low frequency power signal (50 Hz) and in fact only the data signal would arrive at the edge detection part. At the edge detection section, the frequency of the signal would be detected and each controller controls the related load according to the set program.5. ImplementationTo design and implement this structure on a smart home project as a sample and to perform required tests, we build the boards of the needed circuits, program and test each of them, the whole process of which will be explained separately in the following.Fig. 2. Structure of switch section of modulator part.Fig. 3. Overall structure of the detector part.Fig. 4. Board of the server section fabricated including XC3S400-PQFP208.5.1 ServerWe used XC3S400 from the family of SPARTAN3 that is a product from Xilinx to implement the central processing server whose operating frequency is 50 MHz. The modulator part is done by a serial connection. Fig. 4 shows the prototype fabricated board for this section.5.2 ModulatorIn this part we use two SSR relays with 3 V to 24 V control voltages where 5 V is preferred to be used. Regarding to low power consumption of the relay (about 0.2 mA), there is no need to use current buffers to drive them. The used controller is an AVR micro-controller named ATmega32A with the operating frequency of 16 MHz, which controls the relays according to the received order from the server and generates the related square wave form. According to the design of clipping circuit that is used in the detector part, the voltage level of generated signal must be high enough to make the clipping circuit operate correctly; so the amplitude of the signal is amplified to 12 V. To increase the voltage level of the generated signal from 5 V to 12V, a simple voltage buffer with two transistors is used.5.3 DetectorIn this part, the clipping circuit uses a 5.6V Zener diode with the nominal power of 0.25W. So there would only be signals with the amplitude of 5.6 V at the output. The resulted signal enters a high-pass filter that is of the first-order Butterworth type with the cut off frequency of 1 kHz. By choosing the amplifiers of LF365 type, regarding to the constraints of bandwidth of the amplifier, the bandwidth of the filter would not be limited and it can pass rather than 10MHz. Fig. 5 shows the frequency response of the filter which is simulated in HSPICE by using its manufacturer (National Instruments) model. The passband of this filter is 10MHz and it passes the frequencies upper than 997 Hz. The controller and the frequency detector calculate the frequency by using the edge detection method and the load is controlled by the received order from therelated controller. In this part the controller is an AVR type using ATmega8. The prototype sample of the designed detector board is shown in Fig. 6.6. MeasurementThe main concern in this method, which has been implemented in a discrete-time system, is about the loads sensitive to the voltage flicker, such as incandescent lamps and their blinking. So to prevent this, the switching period should be short enough to not be noticed by an observer. Therefore, first of all, we will calculate this time portion. Fig. 5. Frequency response of the designed high-pass filter.Fig. 6. Board of detector section.Fig. 7. Signal analysis for switching time setting of the relays.Fig. 8. 2011 building energy consumption data.We assume that the loads can be disconnected from the power line for tSW. This time includes the response time of the relay and generates at least two rising edges of the data signal. When the frequency of data signal is at its minimum value, i.e. 1 kHz, this time is 2 ms. According to the data in 6 and Fig. 7, for a super fast SSR relay the response time would be approximately 1 ms. So in the worst case the switching time would be 4 ms. As mentioned in 7 and 8, the reduction of one percent of the maximum brightness would be perceptible by human eyes. Assuming a linear relation between the brightness and electrical power applied to the lamp9, the voltage reduction causing the reduction in brightness is calculated as one percent of 220V (r.m.s). As shown in Fig. 7, the switching time for a 50Hz cycle would be calculated as 4.57ms. Also, the time needed for the lamp to return to its normal condition is 0.86 ms. So the interval between two consecutive data signals which would not cause any blink is tSW+ trec, where trec is the recovery time of the lamp (i.e. 0.86ms). Thus, the server is able to send data signal in every 5.43 ms (i.e. 4.57 ms+0.86 ms). With the operating frequency of 16 MHz of the controller in the detector part, the application time of the detector system (i.e. the time of detection and controlling the switch) is less than 100 s which is negligible. So taking a simple and illustrative calculation as an example, for 50 lamps to be controlled simultaneously, this process would take approximately 280 ms and would be done serially. In the worst case this is impossible and would never occur. But it is good to mention again that in the practical implementation this portion of time is surely less than 280 ms. This system has been implemented and tested in a house with typical consumption depicted in Fig. 810. To test the accuracy of the system, 200000 data signals in packets of 1 kHz to 5 kHz have been sent serially and observed. The received data has 0.7% errors in the load side which reports a good level of accuracy for the proposed system. It should be mentioned that all of these tests have been done in the situation that all of the loads are connected and are working as their usual operation with no faults.7. ConclusionsIn this paper, first, we try to introduce different methods of designing a smart home and compare them according to statistics. The HomePlug method is more facilitated than other methods. Then, with proposing a new control and communication system for designing a smart home in the HomePlug method, we go toward significant reduction of design costs and power consumption, with also keeping the accuracy, speed, and reliability of the system. This method is designed, implemented, and has been tested for a month in a house with typical energy usage and it is observed sufficiently well performance of the system. This method surely is able to meet most of the expectations of a smart home, and may result in an evolution in the method of implementing a smart home in wide ranges.References1 H. Morsali, S. M.S. M. Shekarabi, K. Ardekani, H. Khayami, A. Fereidunian, M. Ghassemian, and H. Lesani, “Smart plugs for building energy management systems,” presented at 2012 2nd Iranian Conf. on Smart Grids (ICSG), Tehran, May 2425, 2012.2 C. Jin and T. Kunz, “Smart home networking: lessons from combining wireless and powerline networking,” Smart Grid and Renewable Energy, vol. 2 no. 2, pp. 136151, 2011.3 Y. Zhang, L. Ye, L. Zhu, and Y. Lai, “A solution for low cost and high performance smart home networking,” in Proc. of 2011 Int. Conf. on Engineering and Industries, Jeju, 2011, pp. 16.4 Omron Corporation. Automation systems, programmable controllers catalog. Online. Available :/products5 A. K. Amiri Hagh and Q. H. Mazdarani, “A FPGA-based algorithm for intelligent control of traffic lights,” in Proc. Of 2011 National Conf. on Electronic City, Hamedan, 2011, pp. 17.6 Carlo Gavazzi. Solid state relays and contactors catalog. Online. Available: /pdf/ssrbrochure.pdf7 IESNA Lighting Handbook, 9th ed., Illuminatin Engineering Society, 2000.8 Power Quality Service Center. Power quality: a guide to voltage fluctuation and light flicker brochure.Online.Available:/content/dam/hydro/ medialib/internet/documents/psbusiness/pdf/power_quality_a_guide_to_voltage_fluctuation_and_light_fl.pdf9 C. H. Graham, Vision and Visual Perception, New York: John Wiley and Sons, Inc., 1965.10 D&R Intl., Ltd. 2011 Buildings Energy Data Book. Online. Available: /docs/DataBooks/2011_BEDB.pdf一种新型的基于家用插座的低成本和高性能的智能家庭网络解决方案的设计和实现摘 要智能家居作为终端功率消费者,它是一个智能微电网控制的主要部分。实现一个智能家庭系统有很多的挑战,其中最重要的是成本和简单的实现方法,很明显,总成本的主要份额来自内部控制系统网络,虽然有很多的方法建议,但从消费者的角度来看,仍然没有任何令人满意的方法。本文提出了一种新的关于这个需求的解决方案,不仅最大限度地减少实施成本,还提供了一个高水平的操作简单的,可靠性、可行性、可扩展性、灵活性和其他性能领先的设计。关键词:现场可编程门阵列;HomePlug网络;智能控制系统;低成本;削峰;智能家居1. 介绍随着电力用户数量的迅速增加,发电厂化石燃料使用的增加,环境污染将不可避免。由于优化消费的论点集中在政府的计划,需要的分布监测和控制系统变得更加重要,这离不开基础设施的灵活的智能网络;另一方面,最终消费者的消费行为的控制和优化也极为重要,最终消费模式的变化和网络终端消费优化对削峰参数的有一定的影响,因此,在制定一个智能网络,设计和实施智能房屋需要考虑诸多方面。智能家居设计中的一个重要问题是,设计的总成本决定了智能住宅建筑商的倾向或缺乏倾向,而且,从消费者的角度来看,一个计划是否可以被接受,取决于是否具有最低的成本、最高的易用性、最高的效率、最大的可靠性和网络的安全性,还包括实施成本的主要份额,以及执行一个智能家居设计的易用性与内部网络的类型这些方面。在本文中,我们提出了一种智能家居的最合适的内部网络架构,并与常见的方法进行了比较,它表明我们建议的设计是在执行成本、性能、利用率、可靠性和网络安全方面最优化的方法。在一般情况下,一个智能家庭的能量控制系统分为4个主要部分,包括中央处理器服务器、服务器和设备之间的内部通信网络、用户界面以及最后外部通信网络远程控制的内部系统。考虑到内部通信网络确定的类型和特征服务器的重要性,因此它在设计和实施智能家居的中成本最高。2.内部通信网络智能家居控制系统的内部通信网络基本上是以有线和无线两种形式构成的,两者都有不同的优点和缺点。有线网络包括以太网、通用串行总线(USB)、IEEE1394、家庭电话线网络联盟(HomePNA)、Homeplug,无线网络包括无线标准IEEE802.11、蓝牙、HomeRF、ZigBee、超宽带(UWB)。以太网和USB是两种比较著名的网络,以较低的成本被优先考虑,虽然以太网的网络平台需要昂贵的模块成本。另一方面,因为它们在智能家居内部网络,所以我们需要额外布线。HomePNA是一种数据转换,它是通过电话线做的,它主要是用于互联网网络。然而电话线不适用于在房子里的所有的电气设备,需要考虑重新布线、高成本和低带宽也是该网络的缺点。IEEE1394接口是标准的高速通信和同步实时数据传输串行总线接口,这个接口的特点是较宽的带宽和能传输大量的音频和视频的实时数据,执行网络的成本低,但数据传输范围限制(约450万)和布线需要是它的缺点。WiFi、蓝牙、UWB网络具有可比的范围、条件可靠的能力、安全的网络和较低的信号干扰等优点,但WiFi功耗和价格都高于其他两种类型,UWB网络的带宽比其他两个宽,UWB网络非相声的质量比有线网络高,这三个网络的应用是计算机网络中的数据量最佳的高交换。HomeRF是一种高精度网传递,除了没有交叉的信号,越障容易,该网络的数据传输范围约为100米的开放空间和30米的封闭空间,这似乎是适合于智能家庭的要求,但这种网络所需的模块的成本高使得在实现智能家居过程中应用还是比较少的。同时,ZigBee、HomePlug和电力线通信可以作为实现智能家居项目的合适选择。低成本、低功耗、低结构的复杂性和范围约100米是ZigBee的特点,但是ZigBee网络有一个缺点就是低数据率。而HomePlug网络无需布线,在智能家居中所有点的可达,安装方便、快捷(没有任何改变房屋的内部结构),可扩展、可增加都是它的优点。而且由于数据传输系统使用的电力网络线路作为数据传输平台,HomePlug网络不需要布线成本以及在房子内部的设计,但HomePlug网络的缺点是中央服务器的高成本,这一缺点掩盖了它的许多品质。考虑用各种不同的网络实现一个智能家居控制系统,可以看出,他们各有各的优点和缺点,所以我们绝对随便拒绝其中任意一种。一般来说,一个控制系统如果没有额外的布线,同时使用了低价策略,那么它的灵活性和可扩展性便得到了保证,但它们也可能面临的网络安全和一些实施的困难。然而,有线控制系统由于布线的不可控性,具有较少的灵活性,所以它们无法与无线网络。因此,一个组合的有线无线网络系统将是最佳的网络,这个网络必须有显著的可靠性、快速响应性、可持续性和实施的可行性、灵活性,并能以最低的成本实现最大的可扩展性。3.设计性能3.1低功耗在本设计中,由于5伏直流电压供电的而且所有应用元件都是低功耗的,整个结构的功率消耗都比较低,表1给出了设计的不同部分的功率消耗的近似信息。正如所看到的,这个系统的功率消耗是比较小的,在同一时间,如果进入睡眠模式时,他们不使用,电力消耗将减少到20%的通常数额。根据表1和4的数据,一个用于实现HomePlug系统的共同的消费可编程序逻辑控制器(PLC),总是超过9 W(仅设置一个服务器没有任何负载)。而与大概3W控制10个负载的控制系统相比,常见的PLC系统是低效的。3.2简单,成本低,和小尺寸对于在系统的不同部分采用低功率元件,简化了结构,降低了最终的执行成本。与一个智能家居的其他实现方法比较,成本金额高,这主要是用于实现数据传输的基础结构的装置的原因,这也是HomePlug方法唯一的缺点,但它的结构略胜一筹。该系统的各部分的尺寸(除其尺寸
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。