智能防走失手杖系统【物联网开题报告外文翻译说明书论文】.zip
收藏
资源目录
压缩包内文档预览:(预览前15页/共27页)
编号:22399485
类型:共享资源
大小:1.10MB
格式:ZIP
上传时间:2019-10-16
上传人:小***
认证信息
个人认证
林**(实名认证)
福建
IP属地:福建
50
积分
- 关 键 词:
-
物联网开题报告外文翻译说明书论文
智能防走失手杖系统【物联网开题报告外文翻译说明书论文】.zip
- 资源描述:
-
智能防走失手杖系统【物联网开题报告外文翻译说明书论文】.zip,物联网开题报告外文翻译说明书论文,智能防走失手杖系统【物联网开题报告外文翻译说明书论文】.zip
- 内容简介:
-
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 阿尔茨海默病(AD)是一种起病隐匿的进行性发展的神经系统退行性疾病。临床上以记忆障碍、失语、失用、失认、视空间技能损害、执行功能障碍以及人格和行为改变等全面性痴呆表现为特征,65岁以后发病者称老年性痴呆。现代社会老年痴呆发病率呈上升趋势,而身为独生子女的儿女又缺少条件进行全天候的看护老人。为此,本设计完成一款防走失的老人拐杖,实现定位,和自动报警以及主动发送短信等功能。在已经走丢情况下能定位,在突发情况下可以报警,还可以定时发送短信给儿女。 2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等): 在拐杖中安装卫星接收机模块实现定位功能;利用GPRS模块完成短信发送功能;利用单片机实现各功能的控制。需要借用到GPS卫星定位系统或者北斗卫星导航系统,需要数据中心服务器处理数据。 毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求: 运用GPS或北斗卫星导航系统实现对手杖的实时定位监控。通过此系统给出的定位信息,由手杖中的内置单片机进行分析,如果超出了一定的安全范围,则需要GPRS模块向服务器或者目标机发送警告短信,以通知家人。给出卫星导航的定位方式,工作原理,基本算法。如何利用控制GPRS模块发送短信,最后是怎样使用单片机控制各模块,给出解决方案,基本算法。 4主要参考文献: 1 王远瑶.卫星导航接收机定位解算模块的研究与开发D.武汉:华中科技大学,20082 张小红;唐龙.COSMIC低轨卫星GPS接收机差分码偏差估计J.地球物理学报,2014,02期:3-6.3 唐康华;吴美平;胡小平.MEMS IMU辅助的高性能GPS接收机设计J.测绘学报,2008,02期:2-5.4 刘小波.GPS接收机的优化设计D.成都:电子科技大学,20105 张琳.卫星导航系统接收机抗干扰关键技术研究D.哈尔滨:哈尔滨工业大学,20076 王有杰.基于GPRS的塔机远程安全监控系统设计与开发D.合肥:合肥工业大学,20147 刘经南;刘晖.连续运行卫星定位服务系统城市空间数据的基础设施J.武汉大学学报(信息科学版),2003,03期:3-5.8 艾国祥; 施浒立; 吴海涛; 李志刚; 郭际.基于通信卫星的定位系统原理J.中国科学(G辑:物理学 力学 天文学),2008,12期:4-10.9 梁亦强.基于GPRS的远程安防监控系统设计D.镇江:江苏大学,201010 赵亮; 黎峰.GPRS无线网络在远程数据采集中的应用J.计算机工程与设计,2005,09期:1-3.11 孙德辉;马文丽; 姚文娟; 郑文岭.基于GPRS的无线传输系统设计与实现J.微计算机信息,2007,21期:1-3.12 李秀芝.基于GPRS与STC单片机的LED显示屏控制系统设计D.武汉:武汉科技大学,200813 刘国锦;刘新霞.GPRS无线数据传输技术的应用J.信息化研究,2010,02期:1-3.14 严雪萍; 成立; 韩庆福; 何加祥.基于GPRS的远程数据采集系统设计J.微计算机信息,2008,02期:1-3.15 金小萍.使用单片机实现GPRS通信小系统的研究J.电子工程师,2007,07期:1-3.16 潘楚加.单片机控制GPRS技术远程监控系统设计J.数字技术与应用,2012,03期:1-2.毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:2015.12.152016.01.02撰写及修改开题报告、外文参考资料及译文、论文大纲并提交开题报告、外文参考资料及译文、论文大纲2016.01.052016.04.05拟定论文提纲或设计说明书(下称文档)提纲;提交基本完成的毕业设计创作成果以及文档的撰写提纲2016.04.062016.04.10中期检查(含毕业设计成果验收检查)2016.03.202016.04.20进行毕业设计文档撰写;2016年4月20日定稿截止2016.05.172016.05.24毕业设计答辩2016.05.302016.06.05修改论文上传最终稿,并且上交纸质稿 所在专业审查意见:通过负责人: 2015 年 12 月17 日 毕 业 设 计(论文) 开 题 报 告 1结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写不少于1000字左右的文献综述: 本课题研究的题目是智能防走失手杖系统,具体的实现方法是在拐杖中安装卫星接收机模块实现定位功能;利用GPRS模块完成短信发送功能;利用单片机实现各功能的控制。(一)手杖系统针对的疾病 阿尔茨海默病(AD)是一种起病隐匿的进行性发展的神经系统退行性疾病。临床上以记忆障碍、失语、失用、失认、视空间技能损害、执行功能障碍以及人格和行为改变等全面性痴呆表现为特征,65岁以后发病者称老年性痴呆。阿尔茨海默病的具体症状: 1.逐渐发生的记忆障碍(memoryimpairment)或遗忘是AD的重要特征或首发症状。 (1)近记忆障碍明显:患者不能记忆当天发生的日常琐事,记不得刚做过的事或讲过的话,忘记少用的名词、约会或贵重物件放于何处,易忘记不常用的名字,常重复发问,以前熟悉的名字易搞混,词汇减少。 (2)Korsakoff遗忘状态:表现为近事遗忘,对12min前讲过的事情可完全不能记忆,易遗忘近期接触过的人名、地点和数字,为填补记忆空白,病人常无意地编造情节或远事近移,出现错构和虚构。 2.认知障碍(cognitiveimpairment)是AD的特征性表现,随病情进展逐渐表现明显。 (1)语言功能障碍 (2)视空间功能受损 (3)失认及失用由上可知阿尔茨海默病是一种十分让人头疼的病症,尤其是对老人来说。如果当一个老人在外突然发病,那么他很可能无法靠自己的力量回家,也没有能力向周围的人求助,因为此时老人很可能失去了语言和思考能力。(二)手杖系统的受众接着我来介绍一下中国社会的现状。中国现在正项老龄化社会发展,据联合国统计,到本世纪中期,中国将有近5亿人口超过60岁,而这个数字将超过美国人口总数。分析人士指出,作为全球老龄产业市场潜力最大的国家之一,中国养老行业仍存在许多急需完善之处。而且养老行业是关系到每一个人切身利益的现实问题,也急引起了全社会的广泛关注。值得注意的是,中国人口基数决定了老龄人口规模十分巨大。国家统计局公布数据显示,截止到2014年底,中国60岁以上的老人占到总人口的15.5%,达到了2.12亿。据预测,到2050年,全世界老年人口将达到20.2亿,其中中国老年人口将达到4.8亿,几乎占全球老年人口的四分之一。在中国老龄化进入快速发展阶段的同时,还伴随着高龄化的快速推进。数据显示,目前中国80岁以上的高龄人口已接近2400万,占整个老龄人口的11%。此外,不容忽视的是中国空巢老人问题更加突出,目前在城市有54%的老年家庭是空巢家庭,而随着农村进城务工人数的增加,近几年农村空巢老人比例也已接近半数。 “在种种问题下,传统的家庭养老模式已经被无情打碎,因此需要社会化的服务和帮助跟进到老年人家庭,这也为中国养老事业提出了更高要求满足老龄化社会快速发展的需求,适应高龄、失能、空巢家庭老人不断增长的现状。老年人群是整个人群当中最脆弱、最需要照顾、关爱的人群,因此健康、医疗等服务对他们来说极为重要。”有学者表示。现代社会老年痴呆发病率呈上升趋势,而身为独生子女的儿女又缺少条件进行全天候的看护老人。所以本课题就显得十分必要,一根智能防走失手杖,可以为无力全天看护老人的子女提供老人的实时位置信息,以方便子女的照顾。这个系统不仅方便了子女,而且拥有广阔的市场背景。(三)手杖系统的商业前景在中国的老龄化浪潮下,老年护理的服务市场将不断扩大,这使得智能防走失手杖系统具有巨大的潜力,可能产生巨大的经济效益。据中国产业调研网发布的中国中老年用品行业现状调查研究及市场前景分析预测报告(2015年版)显示,中国经济是世界上各类产品消费容量最大的市场,随着老龄化进程的加快必将成为全球老年人口最多的国家,其市场的巨大潜力越来越成为世界各国尤其是西方大国和跨国企业所关注并成为争夺的新兴市场。在如此的需求之下,智能防走失手杖系统将会发挥出难以想象的能力。 参考文献: 1王远瑶.卫星导航接收机定位解算模块的研究与开发D.武汉:华中科技大学,2008 2张小红;唐龙.COSMIC低轨卫星GPS接收机差分码偏差估计J.地球物理学报,2014,02期:3-6. 3唐康华;吴美平;胡小平.MEMS IMU辅助的高性能GPS接收机设计J.测绘学报,2008,02期:2-5. 4刘小波.GPS接收机的优化设计D.成都:电子科技大学,2010 5张琳.卫星导航系统接收机抗干扰关键技术研究D.哈尔滨:哈尔滨工业大学,2007 6王有杰.基于GPRS的塔机远程安全监控系统设计与开发D.合肥:合肥工业大学,2014 7刘经南;刘晖.连续运行卫星定位服务系统城市空间数据的基础设施J.武汉大学学报(信息科学版),2003,03期:3-5. 8艾国祥; 施浒立; 吴海涛; 李志刚; 郭际.基于通信卫星的定位系统原理J.中国科学(G辑:物理学 力学 天文学),2008,12期:4-10. 9梁亦强.基于GPRS的远程安防监控系统设计D.镇江:江苏大学,2010 10赵亮; 黎峰.GPRS无线网络在远程数据采集中的应用J.计算机工程与设计,2005,09期:1-3. 11孙德辉;马文丽; 姚文娟; 郑文岭.基于GPRS的无线传输系统设计与实现J.微计算机信息,2007,21期:1-3. 12李秀芝.基于GPRS与STC单片机的LED显示屏控制系统设计D.武汉:武汉科技大学,2008 13 刘国锦;刘新霞.GPRS无线数据传输技术的应用J.信息化研究,2010,02期:1-3. 14严雪萍; 成立; 韩庆福; 何加祥.基于GPRS的远程数据采集系统设计J.微计算机信息,2008,02期:1-3. 15 金小萍.使用单片机实现GPRS通信小系统的研究J.电子工程师,2007,07期:1-3. 16潘楚加.单片机控制GPRS技术远程监控系统设计J.数字技术与应用,2012,03期:1-2. 毕 业 设 计(论文) 开 题 报 告 2本课题要研究或解决的问题和拟采用的研究手段(途径): 系统的实现方法:智能防走失手杖系统是基于单片机在GPS模块和GPRS模块上的应用。利用GPS定位技术获取位置信息,利用GPRS模块实现短信的发送,这一切都由单片机控制。而这些都需要单片机开发板的支持。(1)单片机单片机(Microcontrollers)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。从上世纪80年代,由当时的4位、8位单片机,发展到现在的300M的高速单片机。(2)单片机开发板单片机技术自发展以来已走过了近20年的发展路程 。小到遥控电子玩具,大到航空航天技术等电子行业都有单片机应用的影子。针对单片机技术在电子行业自动化方面的重要应用,为满足广大学生、爱好者、产品开发者迅速学会掌握单片机这门技术,于是产生单片机开发板也称单片机学习板、单片机实验板。比较有名的例如电子人DZR-01A单片机开发板。 (3)GPS定位系统全球定位系统(GPS)是本世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统 。其主要目的是为陆、海、空三大领域提供实时、 全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,是美国独霸全球战略的重要组成。经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成。(4)GPRS 通用分组无线服务技术(General Packet Radio Service)的简称,它是GSM移动电话用户可用的一种移动数据业务。GPRS可说是GSM的延续。GPRS和以往连续在频道传输的方式不同,是以封包(Packet)式来传输,因此使用者所负担的费用是以其传输资料单位计算,并非使用其整个频道,理论上较为便宜。GPRS的传输速率可提升至56甚至114Kbps。 内容与目的:(1)首先完成基于单片机的GPS模块设置,需要做到GPS模块的正常运行,能够成功接收到卫星发送的位置信息。(2)接着用编好的程序判断信息,对此信息与基准坐标进行距离运算,若超出一定数值则由单片机向GPRS模块发送命令。(3)设置GPRS模块与单片机成功合作,当单片机发出指令时发送事先编辑好的短信至规定接收端,并附上先前接收到的位置信息。(4)实时接收卫星信息,并定时发送短信,直至收到终止命令。 毕 业 设 计(论文) 开 题 报 告 指导教师意见:1对“文献综述”的评语:该生查阅智能防走失手杖系统相关的文献,论述了课题相关的背景,技术发展和趋势。该课题是学生本科所学专业知识的综合,重在提高学生实践能力和综合解决问题的能力,有一定研究意义。2对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测:课题深度适中,广度一般,工作量适合本科毕业生的要求,预期学生能够在规定时间内完成。 3.是否同意开题: 同意 不同意 指导教师: 2016 年 01 月 05 日所在专业审查意见:同意 负责人: 2016 年 04 月 22 日原文:Regional-scale multiple reference stations for carrier phase-based GPS positioning: A correction generation algorithmChris Rizos, Shaowei Han, and Horng-Yue ChenSchool of Geomatic Engineering, The University of New South Wales, Sydney, NSW 2052, Australia(Received January 6, 2000; Revised August 7, 2000; Accepted August 7, 2000)Continuously operating GPS networks have been used for many years in support of: (a) geodetic goals such as the determination of crustal motion on a variety of spatial scales, and (b) to provide pseudo-range corrections for Wide Area DGPS (WADGPS) implementations. Recently, regional-scale GPS permanent networks have been developed for multi-functional uses, including to support centimetre-accuracy, medium-range, carrier phase-based GPS positioning for surveying or precise navigation applications. In such an implementation the generation of carrier phase correction messages in a manner analogous to WADGPS requires that the integer ambiguities between GPS reference stations be fixed in real-time. Although the ambiguities could be resolved at the beginning of operation the challenge remains: how to recover an integer ambiguity if a cycle slip or data gap occurs, or if a new satellite rises? In this paper, the linear data combination algorithm that has been used is described, and the issue of “ambiguity recovery” techniques for data correction generation purposes is addressed. Three strategies are suggested: (1) using an “ambiguity recovery” technique if the data gap is shorter than a minute or so; (2) re-determining the integer ambiguities using an ionospheric correction derived from the tracking to other satellites when a new satellite rises, or after a long period of data loss, and; (3) re-determining the integer ambiguities with the aid of data corrections generated on previous days. Several 7-day continuous data sets were used for algorithm testing. The corrections can be generated from multiple reference stations in the post-processing mode and then used for comparison purposes with the simulated real-time processing mode using the proposed algorithm. Results confirm that the proposed algorithm can provide reliable carrier phase data corrections for centimetre-accuracy, real-time GPS positioning.1.IntroductionPermanent GPS reference stations are being increasingly established all over the world. Regional-scale GPS perma-nent networks are now being deployed to support a multitude of applications:high precision, real-time GPS kinematic positioning over medium-range baselines,rapid static positioning system using low-cost GPS re-ceivers,machine control applications, e.g. precise farming, anddeformation monitoring, e.g. volcano and structural monitoring.In order to operate a regional-scale GPS network a num-ber of the challenges must be addressed. One of them is how to generate carrier phase corrections which could re-duce distance-dependent errors such as orbit bias, ionosphere and troposphere delays, as well as station-dependent errors, e.g. multipath, measurement noise, etc.? Another is how to compute correction terms in real-time, e.g. implement-ing real-time ambiguity resolution for reference stations over regional-scale areas? How to format and deliver the corrections for different user applications? And so on.A linear combination model for such network-based posi-tioning has been proposed by Han (1997) and Han and Rizos (1997), which can account for orbit bias and ionospheric de-lay, as well as mitigate tropospheric delay, multipath and measurement noise across networks many tens of kilome-tres across. The procedure requires that the data from the GPS reference station network be used to derive corrections to the double-differenced carrier phase data formed between any user receiver (located within the area bounded by the network) and a single reference receiver. Both static and kinematic positioning modes can be thus supported.Li and Gao (1998), Odijk (1999) and Schaer et al. (1999) have studied the impact of atmospheric delay errors across regional-scale GPS networks, and have attempted to resolve the ambiguities in real-time. However, network-based, real-time, carrier phase-based GPS positioning requires that the carrier phase corrections generated from the reference sta-tion network data must be broadcast to users. To ensure ser-vice availability, all the integer ambiguities associated with the network processing must be fixed instantaneously. In this paper, a correction generation algorithm suitable for the regional-scale GPS networks is proposed. The characteris-tics of the double-differenced ionospheric delay and tropo-spheric delay are discussed. Finally, the results for medium-range, single-frequency positioning will be presented to demonstrate the utility of network-based positioning.2.Linear Combination ModelThe single-differenced observations from a user receiver to multiple reference receivers are formed as:where () = ()u ()i ; i indicates the reference station, and u the user station. Based on the conditions given in Han and Rizos (1996), a set of parameters can be computed:where u and i are the coordinates of the user receiver and reference receiver in the Gaussian plane coordinate system. The linear combination of the single-differenced observations can be written as:2.1Features of linear combination techniqueThe linear combination technique proposed by Han and Rizos (1997) has several attractive features. First of all the orbit bias is taken into account, while the ionospheric delay is removed using an epoch-by-epoch and satellite-by-satellite ionosphere model. The tropospheric delay is reduced by in-terpolation based on the North and East coordinates of the reference and user receivers after applying an apriori tro-posphere model correction. The multipath at the reference receivers is mitigated by weighted averaging. The observa-tion noise is mitigated by weighted averaging.2.2Correction term generationFigure 1 illustrates the geometric relationship between the GPS reference stations and the user stations.Define the residual vectors:The double-differenced observation model can be written as:Where the subscripts 1, 2, 3 represent the reference stations, and u denotes the user stations.Using the known coordinates and known integer ambi-guities, the correction vectors V1,3, V2,3 can be computed.Therefore, for real-time applications, the correction vectors, together with the carrier phase and pseudo-range data from reference station 3, must be sent to any user receiver.3.Real-Time Ambiguity ResolutionFor medium-range, real-time, high accuracy applications, the ambiguities associated with the reference stations need to be fixed (i.e. resolved) all of the time. Then the correction term can be generated. When the reference system is set up, the integer ambiguities can be initialised. If a cycle slip or data gap of the order of a few minutes occurs, an “ambiguity recovery” technique can be used (Han, 1997). If after a long data gap, or when a new satellite rises, the relevant ambiguity will have to be estimated and resolved. This is quite a chal-lenge due to the presence of residual (double-differenced) ionospheric and tropospheric delay over medium length base-lines (defined here as being from several tens of kilometres to about 100 km).3.1Ionospheric delayThe ionospheric delay exhibits some similarity between successive days. In addition, the ionospheric delay informa-tion derived from other tracked satellites can also help esti-mate the ionospheric delay for a newly risen satellite. Both of these types of ionospheric delay information can be used to generate a synthetic ionospheric delay to assist ambiguity resolution for the reference station network processing.The double-differenced ionospheric delay can be com-puted as:L1, L2 are the carrier phase observations f1, f2 are the associated frequenciesN1, N2 are the integer ambiguities for L1, L21, 2 are the wavelengths.If the integer ambiguity can be fixed, then the double-differenced ionospheric delay can be obtained using Eq. (8).an example, Fig. 2 displays the double-differenced iono-spheric delay on satellite number 24 and 04 for two successive days.The cross-correlation value in the case of a low elevation satellite (newly risen satellite SV 19) from an analysis of the double-differenced ionospheric delay for 5 successive days at the stations 04790475 (90 km baseline) is shown in Fig. 3. The y-axis is the cross-correlation value and the x-axis is the epoch number. There are 20 epochs of the newly arisen satellite considered in this cross-correlation test. The normalised cross-correlation value is Tropospheric delayThe tropospheric delay also has some similarity between successive days, and the tropospheric delay of the currently tracked satellites could be estimated by Eq. (9). After ap-plying the predicted orbit, careful selection of the reference stations, and using both hardware and software multipath error reduction techniques, effect of multipath error can be assumed to have been significantly mitigated. Therefore, the ionospherie-free linear combination can be derived to esti-mate the tropospheric delay. It means that the correction for tropospheric delay is not physically motivated but esti-mated from the correction of ionospheric delay. In Eq. (9), the tropospheric delay, Trop, in L1 and L2 are assumed the same. However, estimations of Eqs. (8) and (9) are not completely independent:The tropospheric delay for a newly risen satellite could then be estimated using both information sources. Figure 4 displays the double-differenced tropospheric delay for satel-lite number 10 and 04 on successive days, using Eq. (9).Figure 5 shows the tropospheric delay similarity and cross-correlation values of the double-differenced tropospheric de-lay between successive days (for a 90 km baseline). The normalised cross-correction values are at the 0.9 level.Using the characteristic that the double-differenced iono-spheric and tropospheric biases have a high correlation be-tween successive days (as illustrated in Figs. 3 and 5), when a new satellite rises a linear polynomial function model (based on data from successive days and previous epochs) can be determined, and a double-differenced ionospheric and tropo-spheric delay value for the new satellite can be estimated.4.Experimental ResultsThe experiment had two main objectives. The first was to study the ability of the polynomial function model (using data from successive days and previous epochs) to es-timate the atmospheric delay when a new satellite rises or after a long data gap occurs. The second objective was to test the performance of the linear combination observation model for medium-range GPS rapid static positioning assum-ing the user receiver is a single-frequency instrument. Fig-ure 6 displays one part of the Geographic Survey Institutes (GSI) permanent GPS network in Kyushu, Japan. All perma-nent stations host dual-frequency GPS receivers, therefore all station coordinates are computed using the ionosphere-free combination. These results are considered as ground truth for experimental comparisons.4.1Ambiguity resolution for newly risen satellitesthe reference station40 satellite rises (cutoff angle was 15) were observed at stations 0479 and 0475 (90 km baseline) on DoY 272, 1997. The characteristic that the double-differenced ionospheric and tropospheric delays are similar between successive days and on previous epochs has been used in the data processing strategy described earlier to aid ambiguity resolution. The result of this test is illustrated in Fig. 7. The x-axis is the newly risen satellite numbers and the y-axis is the epoch numbers for correct ambiguity resolution (sample rate was 30 sec). Applying the proposed polynomial model for am-biguity resolution, the estimation time can be lessened and the success rate can be improved, as indicated by the dark colour.4.2 Positioning resultsthe user stationsThe performance of the linear combination observation model for medium-range, GPS rapid static positioning using single-frequency user receivers was tested. The results us-ing four baselines 04780479 (23 km), 04660478 (32 km), 04660479 (55 km) and 04650479 (77 km) are compared. Figure 8 displays the comparison of results with network corrections, or without the incorporation of correction terms, for 40 minute observation sessions. The higher accuracy results are obtained when the correction terms are applied in the baseline processing. The left hand graph shows the result with correction terms. It can be seen that the mean offsetsand standard deviation of the variations in the latitude, lon-gitude and baseline length components are less than 5 mm, and 12 cm for the height component. The right hand graph displays the results obtained without applying the correc-tion terms. The mean offsets and the standard deviations of the variations in the latitude, longitude and baseline length component are about 34 cm, and 67 cm for the height com-ponent. It can be concluded that the accuracy of the baseline vectors is significantly improved when using the proposed network-based positioning strategy (Tables 1 and 2).5.Concluding RemarksA linear combination functional model for network-based GPS positioning has been proposed in which the orbit bi-ases and the ionospheric delay terms are eliminated and, in addition, the tropospheric delay, multipath and observation noises can be reduced. A real-time ambiguity resolution technique for newly risen satellites is proposed here, in which the ionospheric and tropospheric delays are estimated using information from currently tracked satellites and previous days tracking. The carrier phase corrections can then be determined using multiple GPS reference stations and the broadcast ephemeris. The results show that the generated corrections do significantly improve the positioning results.Acknowledgments. The third author is supported by a study grant from Taiwans Institute of Earth Sciences, Academia Sinica, to un-dertake research towards a Ph.D. at The University of New South Wales.ReferencesHan, S., Carrier phase-based long-range GPS kinematic positioning, PhD Dissertation, UNISURV S-49, School of Geomatic Engineering, The University of New South Wales, 185 pp, Sydney, Australia, 1997.Han, S. and C. Rizos, GPS network design and error mitigation for real-time continuous array monitoring systems, Proc. 9th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation GPS ION 96, Kansas City, Missouri, 1720 September, 18271836, 1996.Han, S. and C. Rizos, An instantaneous ambiguity resolution technique for medium-range GPS kinematic positioning, Proc. 10th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation GPS ION 97, Kansas City, Missouri, 1619 September, 17891800, 1997.Li, Z. and Y, Gao, Improving ambiguity resolution for a regional area DGPS system using multiple days of data, Proc. 11th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation GPS ION 98, Nashville, Tennessee, 1518 September, 399406, 1998.Odijk, D., Stochastic modelling of the ionosphere for fast GPS ambiguity resolution, Abstracts of IUGG99, Birmingham, U.K., 1924 July, 406, 1999.Schaer, S., G. Beutler, and M. Rothacher, The impact of the atmosphere and other systematic errors on permanent GPS networks, Abstracts of IUGG99, Birmingham, U.K., 1924 July, 406, 1999.C. Rizos (e-mail: .au), S. Han, and H.-Y. Chen基于载波相位的区域尺度多参考站GPS定位:一个修正生成算法Chris Rizos,Shao wei Han,Horng-Yue ChenSchool of Geomatic Engineering, The University of New South Wales, Sydney, NSW 2052, Australia(Received January 6, 2000; Revised August 7, 2000; Accepted August 7, 2000)连续操作GPS网络已经被使用很多年了。它支持大地目标,比如在不同空间尺度上确定地壳运动,和为实现广域差分(WADGPS)提供伪距离修正。最近,对地区级的核GPS永久网络已经发展为多功能用途,包括用于考察或者精确航海应用的支持精确到厘米的,中程的,基于载波相位的GPS定位。在这样一个实现载波相位校正生成消息的方式类似于WADGPS要求之间的整数模糊实时GPS参考站是固定的。虽然在操作的开始时模糊度可能被解决了,但挑战依然存在:如果一个周跳或者数据间隙发生,又如果一个新的卫星发射升空后怎样去恢复一个整型模糊度。在本文中会描述线性数据组合算法和解决为数据校正的“模糊恢复”的技术问题。本文提供了三种建议:(1)如果数据差异小于一分钟左右,使用“模糊恢复”的技术;(2)当一个新的卫星升空或者经过一段长时间的数据丢失,使用一个源于其他卫星的电离层校正来重新决定一个整型模糊。(3)通过前几天生成的数据校正的援助来重新决定一个整型模糊。我们用数个持续7天的连续数据集来测试算法。这种校正可以被处于后处理模式中的多参考站生成,并且之后被用来与使用改进算法的模拟实时处理模式进行比较。结果证实,该算法可以提供可靠的精确到厘米的载波相位数据修正,从而实时的进行GPS定位。1.引言固定的GPS参考站越来越多的在世界的各个角落被建立了起来。区域级的GPS永久网络正发展到支持多种应用。 1.在中程基线上的高精度,实时的GPS动态定位。 2.采用低成本GPS接收机的快速静态定位系统。 3.机械控制应用,如精确农业。 4.形变监测,如火山结构监测。为了操作区域GPS网络,必须解决许多挑战。其中之一是怎样生成可以减少距离相关误差,比如轨道偏差,电离层和对流层延迟,以及站因误差,例如多径,测量噪声等的载波相位修正。另一个是怎样实时的计算“修正条款”,例如,实行实时的分区域参考站模糊度解析。最后是怎样规范和实现这样的校正算法,使它服务于不同的用户应用。诸如此类。在1997年Han,以及1997年Hang和Rizos已经提出了基于网络定位的线性组合模型。这个模型可以解释轨道误差和电离层延迟,以及减轻对流层延迟、多路径和测量噪声跨越几十公里地理位置的网络。程序要求使用来自GPS参考站网络的数据来推导出来自任何用户接收机(处于网络边界内)和单一参考接收机的双叉载波相位数据的修正算法。因此,无论是静态还是动态的定位模式,都可以支持。在1998年Li和Gao,1999年Odijk以及1999年Schaer等人,研究了全球范围内的大气延迟误差对区域范围内的影响,并试图解决实时的模糊性问题。然而,基于网络的,实时的,载波相位为基础的全球定位系统要求载波相位修正的参考站网络产生的数据必须被广播到用户群。为了确保服务的可用性,处理与网络相关的所有整型模糊必须“瞬间”固定。本文提出了适用于地区级GPS网络的修正生成算法。我们对双差电离层延迟和对流层延迟的特点进行了讨论。最后,中距单频定位的结果将用于证明基于网络定位的实用程序。2.线性组合模型从一个用户的接收机到多个参考接收机的单差观测数据组成: 其中()=()u-()i;i表示参考站,u代表用户站点。基于Han和Rizos(1996)给出的条件,可以用一组参数来计算:其中 和是高斯平面坐标系中用户接收机和参考机的坐标。其中单差观测值的线性组合可以写为:2.1线性组合技术的特点(1997)Han和Rizos提出的线性组合技术有几个有吸引力的功能。首先考虑的是轨道偏差,其中使用一个世代间和卫星间的电离层模型来除去电离层延迟。在应用一个先验的对流层模型校正后,用参考机和用户机的东、北坐标差值来减少对流层延迟。多路径参考接收机的加权平均被减轻了。观察噪声由加权平均减轻。2.2修正项代图1说明了参考站和用户站之间的几何关系。定义剩余向量:双差观测模型可以写为:其中下标1、2、3表示参考站,u代表用户站。利用已知坐标和已知的整周模糊度,校正矢量V1,3和V2,3就可以被计算出来了。因此,对于实时应用,修正矢量,连同从参考站3的载波相位和伪距数据,都必须发给任何一个用户接收机。3.实时的模糊消解为了中程、实时、高精度的应用程序,需要总是固定与参考站相关的模糊度。之后就可以生成校正项。一旦参考系统建立完毕,整周模糊度就可以初始化了。如果几分钟内发生了顺序的周期滑动或者数据间隙,我们就可以使用模糊恢复技术(Han,1997)。如果经过一个很长的数据差或单一颗新卫星升空时,相关的模糊性将得到估计和解决。残余的存在(双差电离层和对流层以上)中长基线延迟(这里定义为从几十公里至100公里)是一个相当大的挑战。3.1电离层延迟在连续的几天里,电离层延迟具有一定的相似性。此外,来自其他跟踪卫星的电离层延迟信息也可以有助于估计一个新上升的卫星的电离层延迟。这两种类型的电离层延迟信息,可以用来产生一个“合成”的电离层延迟,以协助参考站网络处理模糊分辨率。双差电离层延迟可以计算为:其中I是L1电离层延迟。L1,L2是载波相位观测。f1,f2是相关的频率。N1,N2是L1,L2的整型模糊度,1,2是波长如果整周模糊度被固定,那么双差电离层延迟可利用式(8)。举个例子,图2显示了24号和04号卫星连续两天的双差电离层延迟。图3显示了一个低仰角卫星(新发射的SV 19 卫星)在0479到0475(90Km基线)上连续5天的双差电离层延迟分析的互相关值。Y轴是互相关值,X轴是历元数。有个20代的新卫星被纳入互相关测试。它的标准互相关值是0.78。3.2对流层延迟连续几天对流层延迟之间也有一些相似,目前跟踪卫星的对流层延迟可被式(9)估计。在应用预测的轨道,仔细选择的参考站,以及使用硬件和软件的多径误差减少技术,可以假定多径误差的影响已经显著缓解。因此,对电离层自由的线性组合可以得到对流层延迟估计。这意味着对流层延迟的校正不是物理上的处理,而是从电离层延迟校正估计得到。在图9中,对流层延迟,Trop,在L1和L2中被认为是一样的。
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。