2017-2018学年高中数学人教A版选修2-3:阶段质量检测(二) 随机变量及其分布 Word版含解析.doc
2017-2018学年【人教A版】选修2-3课时跟踪训练含答案(22份).rar
收藏
资源目录
压缩包内文档预览:
编号:22453219
类型:共享资源
大小:1.09MB
格式:RAR
上传时间:2019-10-17
上传人:hon****an
认证信息
个人认证
丁**(实名认证)
江苏
IP属地:江苏
5.99
积分
- 关 键 词:
-
【人教A版】2018版选修2-3
【人教A版】2017-2018学年
选修2-3课时跟踪训练22份
2017-2018学年
版选修2-3
人教A版选修2-3
2018年3
- 资源描述:
-
2017-2018学年【人教A版】选修2-3课时跟踪训练含答案(22份).rar,【人教A版】2018版选修2-3,【人教A版】2017-2018学年,选修2-3课时跟踪训练22份,2017-2018学年,版选修2-3,人教A版选修2-3,2018年3
- 内容简介:
-
课时跟踪检测(一) 两个计数原理及其简单应用层级一学业水平达标1从甲地到乙地一天有汽车8班,火车3班,轮船2班,某人从甲地到乙地,他共有不同的走法数为()A13种B16种C24种 D48种解析:选A应用分类加法计数原理,不同走法数为83213(种)2已知x2,3,7,y31,24,4,则(x,y)可表示不同的点的个数是()A1 B3C6 D9解析:选D这件事可分为两步完成:第一步,在集合2,3,7中任取一个值x有3种方法;第二步,在集合31,24,4中任取一个值y有3种方法根据分步乘法计数原理知,有339个不同的点3甲、乙两人从4门课程中各选修1门,则甲、乙所选的课程不相同的选法共有()A6种 B12种C30种 D36种解析:选B甲、乙两人从4门课程中各选修1门,由分步乘法计数原理,可得甲、乙所选的课程不相同的选法有4312种4已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A40 B16C13 D10解析:选C分两类:第1类,直线a与直线b上8个点可以确定8个不同的平面;第2类,直线b与直线a上5个点可以确定5个不同的平面故可以确定8513个不同的平面5给一些书编号,准备用3个字符,其中首字符用A,B,后两个字符用a,b,c(允许重复),则不同编号的书共有()A8本 B9本C12本 D18本解析:选D需分三步完成,第一步首字符有2种编法,第二步,第二个字符有3种编法,第三步,第三个字符有3种编法,故由分步乘法计数原理知不同编号共有23318种6一个礼堂有4个门,若从任一个门进,从任一门出,共有不同走法_种解析:从任一门进有4种不同走法,从任一门出也有4种不同走法,故共有不同走法4416种答案:167将三封信投入4个邮箱,不同的投法有_种解析:第一封信有4种投法,第二封信也有4种投法,第三封信也有4种投法,由分步乘法计数原理知,共有不同投法4364种答案:648如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通今发现A,B之间线路不通,则焊接点脱落的不同情况有_种解析:按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种根据分类加法计数原理,共有264113种焊接点脱落的情况答案:139若x,yN*,且xy6,试求有序自然数对(x,y)的个数解:按x的取值进行分类:x1时,y1,2,5,共构成5个有序自然数对;x2时,y1,2,4,共构成4个有序自然数对;x5时,y1,共构成1个有序自然数对根据分类加法计数原理,共有N5432115个有序自然数对10现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法所以共有不同的选法N7891034(种)(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长所以共有不同的选法N789105 040(种)(3)分六类,每类又分两步:从一、二班学生中各选1人,有78种不同的选法;从一、三班学生中各选1人,有79种不同的选法;从一、四班学生中各选1人,有710种不同的选法;从二、三班学生中各选1人,有89种不同的选法;从二、四班学生中各选1人,有810种不同的选法;从三、四班学生中各选1人,有910种不同的选法所以,共有不同的选法N787971089810910431(种)层级二应试能力达标1(a1a2)(b1b2)(c1c2c3)完全展开后的项数为()A9B12C18 D24解析:选B每个括号内各取一项相乘才能得到展开式中的一项,由分步乘法计数原理得,完全展开后的项数为223122(2016全国卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A24 B18C12 D9解析:选B由题意可知EF有6种走法,FG有3种走法,由分步乘法计数原理知,共6318种走法,故选B3如图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连连线标注的数字表示该段网线单位时间内可以通过的最大信息量现从结点A向结点B传递信息,信息可以从分开不同的路线同时传递,则单位时间内传递的最大信息量为()A26 B24C20 D19解析:选D因信息可以分开沿不同的路线同时传递,由分类计数原理,完成从A向B传递有四种方法:1253,1264,1267,1286,故单位时间内传递的最大信息量为四条不同网线上信息量的和:346619,故选D44名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A BC D解析:选D4名同学各自在周六、周日两天中任选一天参加公益活动的情况有2416(种),其中仅在周六(周日)参加的各有1种,所求概率为15圆周上有2n个等分点(n大于2),任取3个点可得一个三角形,恰为直角三角形的个数为_解析:先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不过该点的直径应有n1条,这n1条直径都可以与该点形成直角三角形,即一个点可形成n1个直角三角形,而这样的点有2n个,所以一共可形成2n(n1)个符合条件的直角三角形答案:2n(n1)6将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有_种解析:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即2143,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应着3种填法,因此共有填法为339(种)答案:97某校高二共有三个班,各班人数如下表男生人数女生人数总人数高二(1)班302050高二(2)班303060高二(3)班352055(1)从三个班中选1名学生任学生会主席,有多少种不同的选法?(2)从高二(1)班、(2)班男生中或从高二(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?解:(1)从每个班选1名学生任学生会主席,共有3类不同的方案:第1类,从高二(1)班中选出1名学生,有50种不同的选法;第2类,从高二(2)班中选出1名学生,有60种不同的选法;第3类,从高二(3)班中选出1名学生,有55种不同的选法根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有506055165种不同的选法(2)从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高二(1)班男生中选出1名学生,有30种不同的选法;第2类,从高二(2)班男生中选出1名学生,有30种不同的选法;第3类,从高二(3)班女生中选出1名学生,有20种不同的选法根据分类加法计数原理知,从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有30302080种不同的选法8已知集合Aa1,a2,a3,a4,集合Bb1,b2,其中ai,bj(i1,2,3,4,j1,2)均为实数(1)从集合A到集合B能构成多少个不同的映射?(2)能构成多少个以集合A为定义域,集合B为值域的不同函数?解:(1)因为集合A中的每个元素ai(i1,2,3,4)与集合B中元素的对应方法都有2种,由分步乘法计数原理,可构成AB的映射有N2416个(2)在(1)的映射中,a1,a2,a3,a4均对应同一元素b1或b2的情形此时构不成以集合A为定义域,以集合B为值域的函数,这样的映射有2个所以构成以集合A为定义域,以集合B为值域的函数有M16214个课时跟踪检测(九) 离散型随机变量层级一学业水平达标1给出下列四个命题:15秒内,通过某十字路口的汽车的数量是随机变量;解答高考数学乙卷的时间是随机变量;一条河流每年的最大流量是随机变量;一个剧场共有三个出口,散场后某一出口退场的人数是随机变量其中正确的个数是()A1B2C3 D4解析:选D由随机变量的概念可以直接判断都是正确的2随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度随机变量是某火车站1小时内的旅客流动人数这三个随机变量中不是离散型随机变量的是()AX和 B只有YCY和 D只有解析:选B某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B3抛掷两颗骰子,所得点数之和为,那么4表示的随机试验结果是()A两颗都是2点B一颗是3点,另一颗是1点C两颗都是4点D一颗是3点,一颗是1点或两颗都是2点解析:选D4表示两颗骰子的点数和为44袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量,则所有可能取值的个数是()A25 B10C9 D5解析:选C第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10故选C5对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为,则k表示的试验结果为()A第k1次检测到正品,而第k次检测到次品B第k次检测到正品,而第k1次检测到次品C前k1次检测到正品,而第k次检测到次品D前k次检测到正品,而第k1次检测到次品解析:选D就是检测到次品前正品的个数,k表明前k次检测到的都是正品,第k1次检测到的是次品6甲进行3次射击,甲击中目标的概率为,记甲击中目标的次数为X,则X的可能取值为_解析:甲可能在3次射击中,一次未中,也可能中1次,2次,3次答案:0,1,2,37在8件产品中,有3件次品,5件正品,从中任取3件,记次品的件数为,则2表示的试验结果是_解析:应分0和1两类0表示取到3件正品;1表示取到1件次品、2件正品故2表示的试验结果为取到1件次品、2件正品或取到3件正品答案:取到1件次品、2件正品或取到3件正品8一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6现从中随机取出3个球,以表示取出的球的最大号码,用(x,y,z)表示取出的三个球编号为x,y,z(xy4”表示的试验结果是()A第一枚6点,第二枚2点B第一枚5点,第二枚1点C第一枚2点,第二枚6点D第一枚6点,第二枚1点解析:选D只有D中的点数差为6154,其余均不是,应选D3袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为()AX4 BX5CX6 DX4解析:选C第一次取到黑球,则放回1个球,第二次取到黑球,则共放回2个球,共放了五回,第六次取到了红球,试验终止,故X64袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为y,则y所有可能值的个数是()A25 B10C7 D6解析:选Cy表示取出的2个球的号码之和,又123,134,145,156,235,246,257,347,358,459,故y的所有可能取值为3,4,5,6,7,8,9,共7个5一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大值可能为_解析:由题意可知X取最大值时只剩下一把钥匙,但锁此时未打开,故试验次数为4答案:46一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时总共拨的次数为,则随机变量的所有可能取值的种数为_解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A24种答案:247写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数;(2)抛掷甲、乙两枚骰子,所得点数之和Y解:(1)可取0,1,2i,表示取出的3个球中有i个白球,3i个黑球,其中i0,1,2(2)Y的可能取值为2,3,4,12若以(i,j)表示抛掷甲、乙两枚骰子后骰子甲得i点且骰子乙得j点,则Y2表示(1,1);Y3表示(1,2),(2,1);Y4表示(1,3),(2,2),(3,1);Y12表示(6,6)8写出下列随机变量可能的取值,并说明随机变量所表示的随机试验的结果在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记|x2|yx|解:因为x,y可能取的值为1,2,3,所以0|x2|1,0|xy|2,所以03,所以可能的取值为0,1,2,3,用(x,y)表示第一次抽到卡片号码为x,第二次抽到卡片号码为y,则随机变量取各值的意义为:0表示两次抽到卡片编号都是2,即(2,2)1表示(1,1),(2,1),(2,3),(3,3)2表示(1,2),(3,2)3表示(1,3),(3,1)课时跟踪检测(二) 两个计数原理的综合应用层级一学业水平达标1由数字1,2,3组成的无重复数字的整数中,偶数的个数为()A15B12C10 D5解析:选D分三类,第一类组成一位整数,偶数有1个;第二类组成两位整数,其中偶数有2个;第三类组成3位整数,其中偶数有2个由分类加法计数原理知共有偶数5个2三人踢毽子,互相传递,每人每次只能踢一下由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有()A4种 B5种C6种 D12种解析:选C若甲先传给乙,则有甲乙甲乙甲,甲乙甲丙甲,甲乙丙乙甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法3若三角形的三边长均为正整数,其中一边长为4,另外两边长分别为b,c,且满足b4c,则这样的三角形有()A10个 B14个C15个 D21个解析:选A当b1时,c4;当b2时,c4,5;当b3时,c4,5,6;当b4时,c4,5,6,7故共有10个这样的三角形选A4已知集合M1,2,3,N4,5,6,7,从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,第一、二象限不同点的个数为()A18 B16C14 D10解析:选C分两类:一是以集合M中的元素为横坐标,以集合N中的元素为纵坐标有326个不同的点,二是以集合N中的元素为横坐标,以集合M中的元素为纵坐标有428个不同的点,故由分类加法计数原理得共有6814个不同的点5如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A,B,C,D,E,F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有()A6种 B36种C63种 D64种解析:选C每个焊接点都有正常与脱落两种情况,只要有一个脱落电路即不通,共有26163种故选C6如图所示为一电路图,则从A到B共有_条不同的单支线路可通电解析:按上、中、下三条线路可分为三类:从上线路中有3条,中线路中有1条,下线路中有224(条)根据分类加法计数原理,共有3148(条)答案:87将4种蔬菜种植在如图所示的5块试验田里,每块试验田种植一种蔬菜,相邻试验田不能种植同一种蔬菜,不同的种法有_种(种植品种可以不全)解析:分五步,由左到右依次种植,种法分别为4,3,3,3,3由分步乘法计数原理共有43333324(种) 答案:3248古人用天干、地支来表示年、月、日、时的次序用天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,用天干的“乙、丁、己、辛、癸”和地支的“丑、卯、巳、未、酉、亥”相配,共可配成_组解析:分两类:第一类,由天干的“甲、丙、戊、庚、壬”和地支的“子、寅、辰、午、申、戌”相配,则有5630组不同的结果;同理,第二类也有30组不同的结果,共可得到303060组答案:609某高中毕业生填报志愿时,了解到甲、乙两所大学有自己感兴趣的专业,具体情况如下:甲大学乙大学专业生物学数学化学会计学医学信息技术学工商管理学物理学如果这名同学只能选择一所大学的一个专业,那么他的专业选择共有多少种?解:由图表可知,分两类,第一类:甲所大学有5个专业,共有5种专业选择方法;第二类:乙所大学有3个专业,共有3种专业选择方法由分类加法计数原理知,这名同学可能的专业选择有N538(种) 10若直线方程AxBy0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?解:分两类完成第1类,当A或B中有一个为0时,表示的直线为x0或y0,共2条第2类,当A,B不为0时,直线AxBy0被确定需分两步完成第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法由分步乘法计数原理知,共可确定4312条直线由分类加法计数原理知,方程所表示的不同直线共有21214条层级二应试能力达标1把10个苹果分成三堆,要求每堆至少有1个,至多5个,则不同的分法共有()A4种B5种C6种 D7种解析:选A分类考虑,若最少一堆是1个,由至多5个知另两堆分别为4个、5个,只有一种分法;若最少一堆是2个,则由3544知有2种分法;若最少一堆是3个,则另两堆为3个、4个共1种分法,故共有分法1214种2要把3张不同的电影票分给10个人,每人最多一张,则有不同的分法种数是()A2 160 B720C240 D120解析:选B可分三步:第一步,任取一张电影票分给一人,有10种不同分法;第二步,从剩下的两张中任取一张,由于一人已得电影票,不能再参与,故有9种不同分法第三步,前面两人已得电影票,不再参与,因而剩余最后一张有8种不同分法所以不同的分法种数是1098720(种) 3用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻,这样的四位数有()A36个 B18个C9个 D6个解析:选B分三步完成,第一步,确定哪一个数字被使用2次,有3种方法;第二步,把这2个相同的数字排在四位数不相邻的两个位置上,有3种方法;第三步,将余下的2个数字排在四位数余下的两个位置上,有2种方法故有33218个不同的四位数4用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂色方法共有()A12种 B24种C48种 D72种解析:选D先涂C,有4种涂法,涂D有3种涂法,涂A有3种涂法,涂B有2种涂法由分步乘法计数原理,共有433272(种)涂法5从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成_个不同的对数值解析:要确定一个对数值,确定它的底数和真数即可,分两步完成:第1步,从这8个数中任取1个作为对数的底数,有8种不同取法;第2步,从剩下的7个数中任取1个作为对数的真数,有7种不同取法根据分步乘法计数原理,可以组成8756个对数值在上述56个对数值中,log24log39,log42log93,log23log49,log32log94,所以满足条件的对数值共有56452个答案:526用6种不同的颜色给图中的“笑脸”涂色,要求“眼睛”(如图A,B所示区域)用相同颜色,则不同的涂色方法共有_种解析:第1步涂眼睛有6种涂法,第2步涂鼻子有6种涂法,第3步涂嘴有6种涂法,所以共有63216种涂法答案:2167用6种不同颜色为如图所示的广告牌着色,要求在A,B,C,D四个区域中相邻(有公共边的)区域不用同一种颜色,求共有多少种不同的着色方法?解:(1)法一:分类:第一类,A,D涂同色,有654120(种)涂法,第二类,A,D涂异色,有6543360(种)涂法,共有120360480(种)涂法法二:分步:先涂B区,有6(种)涂法,再涂C区,有5(种)涂法,最后涂A,D区域,各有4(种)涂法,所以共有6544480(种)涂法8用1,2,3,4四个数字(可重复)排成三位数,并把这些三位数由小到大排成一个数列an(1)写出这个数列的前11项;(2)这个数列共有多少项?(3)若an341,求n解:(1)111,112,113,114,121,122,123,124,131,132,133(2)这个数列的项数就是用1,2,3,4排成的三位数的个数,每个位上都有4种排法,则共有44464项(3)比an341小的数有两类:共有24413444项n44145(项) 课时跟踪检测(五) 组合与组合数公式层级一学业水平达标1CC的值为()A36B84C88 D504解析:选ACCCC842以下四个命题,属于组合问题的是()A从3个不同的小球中,取出2个排成一列B老师在排座次时将甲、乙两位同学安排为同桌C在电视节目中,主持人从100位幸运观众中选出2名幸运之星D从13位司机中任选出两位开两辆车从甲地到乙地解析:选C选项A是排列问题,因为2个小球有顺序;选项B是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C是组合问题,因为2位观众无顺序;选项D是排列问题,因为两位司机开哪一辆车是不同的选C3方程CC的解集为()A4 B14C4或6 D14或2解析:选C由题意知或解得x4或64平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆()A220个 B210个C200个 D1 320个解析:选AC220,故选A5从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有()A60种 B48种C30种 D10种解析:选C从5名志愿者中选派2人参加星期六的公益活动有C种方法,再从剩下的3人中选派2人参加星期日的公益活动有C种方法,由分步乘法计数原理可得不同的选派方法共有CC30种故选C6CCCC的值等于_解析:原式CCCCCCCCCCC7 315答案:7 3157若已知集合P1,2,3,4,5,6,则集合P的子集中含有3个元素的子集数为_解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C20种答案:208不等式Cn5的解集为_解析:由Cn5,得n5,n23n100解得2n3C解:(1)原方程等价于m(m1)(m2)6,4m3,m7(2)由已知得:x8,且xN*,C3C,即,x3(9x),解得x,x7,8原不等式的解集为7,810某区有7条南北向街道,5条东西向街道(如图)(1)图中有多少个矩形?(2)从A点走向B点最短的走法有多少种?解:(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有CC210(个)(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A到B最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有CC210(种)走法层级二应试能力达标1若CC,则n的集合是()A6,7,8,9B0,1,2,3Cn|n6 D7,8,9解析:选ACC,nN*,n6,7,8,9n的集合为6,7,8,92将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A12种 B18种C36种 D54种解析:选B由题意,不同的放法共有CC318种3若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A60种 B63种C65种 D66种解析:选D和为偶数共有3种情况,取4个数均为偶数的取法有C1种,取2奇数2偶数的取法有CC60种,取4个数均为奇数的取法有C5种,故不同的取法共有160566种4过三棱柱任意两个顶点的直线共15条,其中异面直线有()A18对 B24对C30对 D36对解析:选D三棱柱共6个顶点,由此6个顶点可组成C312个不同四面体,而每个四面体有三对异面直线则共有12336对5方程CCC的解集是_解析:因为CCC,所以CC,由组合数公式的性质,得x12x2或x12x216,得x13(舍去),x25答案:56某书店有11种杂志,2元1本的有8种,1元1本的有3种小张买杂志用去10元钱,则不同买法的种数为_(用数字作答)解析:由已知分两类情况:(1)买5本2元的买法种数为C(2)买4本2元的、2本1元的买法种数为CC故不同买法种数为CCC266答案:2667已知C,C,C成等差数列,求C的值解:由已知得2CCC,所以2,整理得n221n980,解得n7或n14,要求C的值,故n12,所以n14,于是CC918已知集合Aa1,a2,a3,a4,B0,1,2,3,f是从A到B的映射(1)若B中每一元素都有原象,则不同的映射f有多少个?(2)若B中的元素0无原象,则不同的映射f有多少个?(3)若f满足f(a1)f(a2)f(a3)f(a4)4,则不同的映射f又有多少个?解:(1)显然映射f是一一对应的,故不同的映射f共有A24个(2)0无原象,而1,2,3是否有原象,不受限制,故A中每一个元素的象都有3种可能,只有把A中每一个元素都找出象,这件工作才算完成,不同的映射f有3481个(3)11114,01124,00134,00224,不同的映射有:1CACAC31个课时跟踪检测(八) “杨辉三角”与二项式系数的性质层级一学业水平达标1关于(ab)10的说法,错误的是()A展开式中的二项式系数之和为1 024B展开式中第6项的二项式系数最大C展开式中第5项或第7项的二项式系数最大D展开式中第6项的系数最小解析:选C根据二项式系数的性质进行判断,由二项式系数的性质知:二项式系数之和为2n,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数,所以是系数中最小的2已知(ab)n展开式中只有第5项的二项式系数最大,则n等于()A11B10C9 D8解析:选D只有第5项的二项式系数最大,15n83设(1x)(1x)2(1x)3(1x)na0a1xa2x2anxn,当a0a1a2an254时,n等于()A5 B6C7 D8解析:选C令x1,则a0a1an222232n,254,n74若对于任意实数x,有x3a0a1(x2)a2(x2)2a3(x2)3,则a2的值为()A3B6 C9D12解析:选Bx32(x2)3,a2C265已知C2C22C2nC729,则CCC的值等于()A64 B32C63 D31解析:选BC2C22C2nC(12)n729n6,CCC326若(x3y)n的展开式中各项系数的和等于(7ab)10的展开式中二项式系数的和,则n的值为_解析:(7ab)10的展开式中二项式系数的和为CCC210,令(x3y)n中xy1,则由题设知,4n210,即22n210,解得n5答案:57(2x1)10展开式中x的奇次幂项的系数之和为_解析:设(2x1)10a0a1xa2x2a10x10,令x1,得a0a1a2a101,再令x1,得310a0a1a2a3a10,两式相减,可得a1a3a9答案:8(1)n展开式中的各项系数的和大于8而小于32,则系数最大的项是_解析:因为8CCC32,即82n32所以n4所以展开式共有5项,系数最大的项为T3C()26x答案:6x9若(x23x2)5a0a1xa2x2a10x10(1)求a1a2a10;(2)求(a0a2a4a6a8a10)2(a1a3a5a7a9)2解:(1)令f(x)(x23x2)5a0a1xa2x2a10x10,a0f(0)2532,a0a1a2a10f(1)0,故a1a2a1032(2)(a0a2a4a6a8a10)2(a1a3a5a7a9)2(a0a1a2a10)(a0a1a2a10)f(1)f(1)010已知n,若展开式中第5项、第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数解:CC2C,整理得n221n980,n7或n14,当n7时,展开式中二项式系数最大的项是T4和T5,T4的系数为C423;T5的系数为C32470;当n14时,展开式中二项式系数最大项是T8,T8的系数为C7273 432层级二应试能力达标11(1x)(1x)2(1x)n的展开式的各项系数之和为()A2n1B2n1C2n11 D2n解析:选C法一:令x1得,12222n2n11法二:令n1,知各项系数和为3,排除A、B、D选项2在(1x)n(n为正整数)的二项展开式中奇数项的和为A,偶数项的和为B,则(1x2)n的值为()A0 BABCA2B2 DA2B2解析:选C(1x)nAB,(1x)nAB,所以(1x2)nA2B23若(12x)2 016a0a1xa2 016x2 016(xR),则的值为()A2 B0C1 D2解析:选C(12x)2 016a0a1xa2 016x2 016,令x,则2 016a00,其中a01,所以14若(xy)9按x的降幂排列的展开式中,第二项不大于第三项,且xy1,xy1,即x的取值范围是(1,)5若n展开式的二项式系数之和为64,则展开式的常数项为_解析:n展开式的二项式系数之和为2n,2n64,n6Tr1Cx6rrCx62r由62r0得r3,其常数项为T31C20答案:206若n的展开式中含有x的项为第6项,若(13x)na0a1xa2x2anxn,则a1a2an的值为_解析:二项式n展开式的通项为Tr1C(x2)nrrC(1)rx2n3r因为含x的项为第6项,所以r5,2n3r1,解得n8令x1,得a0a1a8(13)828,令x0,得a01,a1a2a8281255答案:2557已知n的展开式中偶数项的二项式系数和比(ab)2n的展开式中奇数项的二项式系数和小于120,求第一个展开式中的第3项解:因为n的展开式中的偶数项的二项式系数和为2n1,而(ab)2n的展开式中奇数项的二项式系数的和为22n1,所以有2n122n1120,解得n4,故第一个展开式中第3项为T3C()2268在二项式(axmbxn)12(a0,b0,m,n0)中有2mn0,如果它的展开式中系数最大的项恰是常数项(1)求系数最大的项是第几项?(2)求的范围解:(1)设Tr1C(axm)12r(bxn)rCa12rbrxm(12r)nr为常数项,则有m(12r)nr0,即m(12r)2mr0,r4,它是第5项(2)第5项是系数最大的项,由得a8b4a9b3,a0,b0,ba,即由得,故的取值范围为课时跟踪检测(六) 组合的综合应用层级一学业水平达标1200件产品中有3件次品,任意抽取5件,其中至少有2件次品的抽法有()ACCBCCCCCCC DCCC解析:选B至少2件次品包含两类:(1)2件次品,3件正品,共CC种,(2)3件次品,2件正品,共CC种,由分类加法计数原理得抽法共有CCCC,故选B2某科技小组有6名学生,现从中选出3人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为()A2 B3C4 D5解析:选A设男生人数为x,则女生有(6x)人依题意:CC16即x(x1)(x2)654166432x4,即女生有2人3从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有()ACC种 BCA种CCACA种 DAA种解析:选B分两步进行:第一步:选出两名男选手,有C种方法;第2步,从6名女生中选出2名且与已选好的男生配对,有A种故有CA种4将5本不同的书分给4人,每人至少1本,不同的分法种数有()A120 B5C240 D180解析:选C先从5本中选出2本,有C种选法,再与其他三本一起分给4人,有A种分法,故共有CA240种不同的分法5(四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A144个 B120个C96个 D72个解析:选B当万位数字为4时,个位数字从0,2中任选一个,共有2A个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有CA个偶数故符合条件的偶数共有2ACA120(个)62名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有_种解析:先分医生有A种,再分护士有C种(因为只要一个学校选2人,剩下的2人一定去另一学校),故共有AC212种答案:127北京市某中学要把9台型号相同的电脑送给西部地区的三所希望小学,每所小学至少得到2台,共有_种不同送法解析:每校先各得一台,再将剩余6台分成3份,用插板法解,共有C10种答案:108有两条平行直线a和b,在直线a上取4个点,直线b上取5个点,以这些点为顶点作三角形,这样的三角形共有_个解析:分两类,第一类:从直线a上任取一个点,从直线b上任取两个点,共有CC种方法;第二类:从直线a上任取两个点,从直线b上任取一个点共有CC种方法满足条件的三角形共有CCCC70个答案:709(1)以正方体的顶点为顶点,可以确定多少个四面体?(2)以正方体的顶点为顶点,可以确定多少个四棱锥?解:(1)正方体8个顶点可构成C个四点组,其中共面的四点组有正方体的6个表面及正方体6组相对棱分别所在的6个平面的四个顶点故可以确定四面体C1258个(2)由(1)知,正方体共面的四点组有12个,以这每一个四点组构成的四边形为底面,以其余的四个点中任意一点为顶点都可以确定一个四棱锥,故可以确定四棱锥12C48个107名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?(1)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;(2)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮解:(1)第一步,将最高的安排在中间只有1种方法;第二步,从剩下的6人中选取3人安排在一侧有C种选法,对于每一种选法只有一种安排方法,第三步,将剩下3人安排在另一侧,只有一种安排方法,共有不同安排方案C20种(2)第一步从7人中选取6人,有C种选法;第二步从6人中选2人排一列有C种排法,第三步,从剩下的4人中选2人排第二列有C种排法,最后将剩下2人排在第三列,只有一
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
2:不支持迅雷下载,请使用浏览器下载
3:不支持QQ浏览器下载,请用其他浏览器
4:下载后的文档和图纸-无水印
5:文档经过压缩,下载后原文更清晰
|