翻译修改后.doc

全数字控制的桥式可逆直流脉宽调速系统设计

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:23644720    类型:共享资源    大小:2.13MB    格式:RAR    上传时间:2019-11-10 上传人:qq77****057 IP属地:江苏
12
积分
关 键 词:
数字控制 可逆 直流 调速 系统 设计
资源描述:
全数字控制的桥式可逆直流脉宽调速系统设计,数字控制,可逆,直流,调速,系统,设计
内容简介:
基于PWM的永磁无刷直流电动机 调速控制系统的研究摘 要永磁无刷直流电动机调速系统 PMBDCSCS 是简单的控件。其功率密度高和性能高,并且在很多领域广泛的使用。在PMBDCSCS广泛使用的高压变频器运行常用的表现为六个方法分别是:H_PWM_L_PWMON_PWM,H_PWM_L_ON,H_ON_L_PWM,PWM_ON。在本文中,介绍了六种PWM方法,并在理论和系统上进行了详细的比较。由模拟结果的分析并证明是正确的。一永磁无刷直流电动机速度控制图1所示系统(PMBDCSCS)120度导通模式下的简化框图,控制器根据转子位置传感器的转子位置信号发送到控制导通电力电子器件的开启和关闭。在任何时刻的电力电子占空比在PWM装置改变调整永磁电机转速。每个电力电子器件的逻辑触发信号,在不同的PWM方法显示在图2至图7。二 六种PWM方法的比较A. 比较效率和可靠性,在六种PWM方法中与其他五个PWM方法,H_PWM_L_PWM传导设备被砍伤在开关频率,它几乎两倍开关损失比其他五个PWM方法。变频器的输出电压变化之间的Ud在H_PWM_L_PWM及-Ud,因此H_PWM_L_PWM是双极性控制。然而,逆变器输出电压变化Ud和0在其他五个PWM方法,因此之间其他五个PWM方法是单极控制。开关频率的电流脉动H_PWM_L_PWM几乎是其他五种PWM方法的两倍,在H_PWM_L PWM永磁电机具有更多的谐波损耗。所以H_PWM_L_的PWM是效率最低的。 因为H_PWM-L_PWM开关损耗,变频器散热性能的需求是非常高。每个器件的开关损耗是不同的,在H_PWM_L_ON和H_ON_L_PWM和温度不在散热器表面均匀。根据变频器热散热性能,PWM_ON,ON_PWM,PWN_ON_PWM必须可靠性高于H_PWM_L_ON,H_PWM_L_PWM和H_ON_L_PWM的。B.转矩脉动,在六种PWM方法中的比较换相转矩脉动和开关频率转矩脉动的PMBDCSCS在每种PWM方法中是不同的。H_PWM_L_PWM是两极控制,和其他五种PWM电流脉动方法相比较具有较大的开关频率比,因此其开关频率转矩脉动在六种PWM方法中是最大的。从零到60度H_PWM_L_ON和PWM_ON具有相同的器件逻辑触发信号。与ON_PWM从60度至120度,在120度具有相同的导通模式。H_ON_L_PWM和ON_PWM从零到60度具有相同的设备逻辑触发信号和PWM_ON从60度至120度,在120度有相同的导通模式。因此转矩脉动在H_PWM_L_ON和H_ON_L_PWM大于在PWM_ON的ON_PWM。所以PWM_ON,ON_PWM和的PWM ON_PWM的主要研究和比较在下面一环节。假设该阶段将被关闭,B相进行,C相正处于导通,电感和CEMF是理想的,D是占空比。Ud是中性点电压。在换流的过程中,PWM_ON和PWM_ON_PWM的变频器的输出电压方程是相同的。当设备断开时,逆变器输出电压方程在PWM_ON和PWM_ON_PWM可以表示为:UA=0=EA+LA+RAiA+UN (1)UB=UdD=EB+LB+RBiB+UN (2)Uc=0=EC+LC+RCiC+UN (3)在PWM_ON和PWM_ON_PWM得UN:UN=UdD (4)当斩波备是关闭的,逆变器输出电压在ON_PWM中的方程可以表示:UA=0=EA+LA+RAiA+UN (5)UB=Ud=EB+LB+RBiB+UN (6)UC=Ud(1-D)=EC+LC+RCiC+UN (7)在ON_PWM中得UN:UN=Ud-UdD (8)当斩波设备打开时,逆变器输出电压方程在PWM_ON,PWM_ON_PWM和ON_PWM中是相同的。但是UN在PWM_ON,PWM_ON_PWM和ON_PWM上是不同的。根据(4)及(8),UN在PWM_ON和PWM_ON_PWM比在ON_PWM上较低。根据(1),(5),在相电流下降速度快的情况下,同相位的扭矩,下降的速度更快,但此时B相的上升速度在PWM_ON,PWM_ON_PWM和 ON_PWM中是相同的,所以换相转矩脉动较大ON_PWM。 当A相CEMF超过零和斩波设备S2的是在关闭状态下,A相电压方程为为:Us3+Us1=EA-EB-LB-RBiB (9)当A相CEMF是大于零和斩波装置S3的是在关闭状态下,A相电压方程为:Ud+Us2+Us1=EA+EC+LC+RCiC (10)当A相CEMF是小于零和斩波设备S2处于关闭状态,A相电压方程为:Ud+Us3+Us4=EA+EB+LB+RBiB (11)当A相CEMF是小于零和斩波设备S3是在关闭状态,A相电压方程为:Us4+Us2=EA-EC-LC-RCiC (12)当A相CEMF超过零和斩波设备的状态,A相电压方程为: Ud-Ud-Us1=EA (13)当A相CEMF是小于零的干旱斩波设备的状态,A相电压方程为:Ud-0-Us4=EA (14)当斩波器S3是在关机状态下,电压在B相和C相的方程为:Us2+Us6=EB+Ec+LB+Lc+RBiB+Rcic (15)当斩波器S2是在关闭状态,电压在B相和C相的方程为:US3+US5=EB+EC+LB+LC+RBiB+RCiC (16)当斩波设备开启状态,电压方程在相位B和相位C是:Ud-US3-US2=EB+EC+LB+LC+RBiB+RCIC (17) 根据(13)和(14)当斩波设备打开状态时A相是没有约束的。如果时间趋势为零,(15)和(16)显示,LBiB/ dt几乎等于 - EB,Lcic/ dt几乎等于-EC。当斩波设备处于关闭状态,(9)和(12)表明,相A CEMF产生A相续流电流。当前转换频率的脉动电流,并导致转换低频转矩脉动。当的斩波设备是在关闭状态下,(10)和(11)表明,A相CEMF不产生续流也不产生开关频率的脉动转矩。 在非换流过程,为了消除A相CEMF斩波续流电流引起的在PWM装置时,当A相位极性从正变化为负时必须从S2到S3进行改变。PWM_ON_PWM有变化,因此转矩脉动引起了A相被消除。原则上其他非换流过程是讨论上述过程相同。因此,在PWM_ON_PWM中扭矩表现是最好的,整流频率的扭矩性能在PWM_ON中比在ON_PWM更好。CEMC和振动在三种PWM方法中的比较 基于开关操作的PWM逆变器已视为代表性的进行噪声源和辐射电磁干扰的排放。所进行的排放可能会干扰其他电子设备,通过电源线,同时辐射可能带来的故障,特别是在附近的无线电控制设备噪声源。当前的脉动是在H_PWM_L_PWM最大,EMC系统在H_PWM_L_PWM中是最坏的。该EMC系统在ON_PWM中比在H_PWM_L_ON和H_ON_L_PWM中更好。脉动转矩是永磁电机振动的主要来源。因此,根据脉动扭矩振动性能从优越到劣效的排序是PWM_ON_PWM,PWM_ON,ON_PWM,H_PWM_L_N(H_ON_L_PWM),H_PWM_L_PWM。 三. 仿真验证电阻器,电感和VCVS替代定子电阻,绕组电感和相CEMF。永磁电机参数是:PN =4.5KW,NE=400 RPM,磷= 4,EA =70伏,LA=254uH,MAB=80uH,RA=0.03。开关频率是10kHz,在每个图中,上层波形是在PWM_ON_PWM的仿真结果,中间波形是在ON_PWM模拟结果,较低的波形是在PWM_ON模拟结果。 图8和图9证明,在PWM_ON_PWM中扭矩表现是最好的,整流的脉动转矩在PWM_ON中优于ON_PWM。图11表明,对于换流频率在谐波电流的大小,逆变器直流输入滤波电感在PWM_ON_PWM和PWM_ON中比在ON_PWM小。图10表明,对于开关频率的谐波电流大小逆变器直流输入滤波电感在PWM_ON_PWM,PWM_ON和ON_PWM几乎是相同的。四 结 论通过理论分析和仿真验证效率,可靠性,转矩脉动,EMC和振动在六种PWM方法中的比较,从系统的整体综合性能优势来看,劣效性依次是PWM_ON_PWM,PWM_ON,ON_PWM,H_PWM_L_ON(H_ON_PWM),H_PWM_L_PWM。此结论有助于系统设计在工中的实践,尤其是多相电机驱动系统。 参 考 文 献 1伍中协,ICK,无刷直流电动机换相转矩脉动抑制,使用单一的直流电流传感器研究J。IEEE电力电子,2004年19(2),第312-219页2 唐任远,现代永磁电机 - 理论与设计,机械工业出版社,1997年12月。3 Bimal K. bose 现代电力电子与交流传动,机械工业出版社2003年1月。4 村井良广, 川濑良广等 改进无刷直流电动机的微型电机,并在工业中应用, Vo1.25,IEEE的交易 转矩脉动 1989年6月年第3期 第441一450页5 王兴华 李庆福,王书红,分析换相转矩永磁无刷直流电动机,西安交通大学学报,Vo1.37,第六学报 2003年6月 第612-616 页附图: 图1的简化框图的PMBDCSCS 图2.每个设备在ON_PWM 图3.每个设备在PWM_ON 逻辑索具信号 逻辑索具信号图4.每个设备在H_PWM_L_ON 图5.每个设备在H_ON_L_PWM 逻辑索具信号 逻辑索具信号 图6.每个设备在H_PWM_L_PWM 图7.每个设备在PWM_ON_PWM 逻辑索具信号 逻辑索具信号 图8. 在开关频率附近的谐波转矩谱 图9.在换相频率附近的谐波转矩谱 图10 图11 图12.A相电流The Study of PWM Methods in Permanent Magnet Brushless DC Motor SpeedControl System Qiang Li, Hai Huang, Binchuan YinWuhan Marine Electric Propulsion Research Institute, wuhan, 430064, chinaAbstract-The Permanent Magnet Brushless DC Motor Speed Control System (PMBDCSCS)is simple control,high Power density and high Performance,and used in many domains .The voltage inverter used widely in the PMBDCSCS operates commonly in the six PWM methods: H_PWM_L_PWMON_PWM,H_PWM_L_ON,H_ON_L_PWM,PWM_ON and PWM_ON_PWM .In this paper,the six PWM methods are introduced in theory and are compared in detail at the system level ,the analysis is proved true by the simulation result.II. THEORY OF THE SIX PWM METHODSThe Permanent Magnet Brushless DC Motor speed Control System(PMBDCSCS) which simplified diagram is shown in Fig.1 operates in 120 conduction mode,the controller according to rotor position signal sent from the rotor Position sensor controls the turn-on and turn-off of Power electronic devices .At any instant the duty cycle of Power electronic Devices in the PWM is changed to adjust the permanent magnet motor rotate speed .The logic trigger signal of each power electronic device in the different PWM method is showed in Fig.2 to Fig.7.II. COMPARISON OF THE SIX PWM METHODSA. Comparison of efficiency and reliability in the six PWM methods Unlike the other five PWM methods, H_PWM_L_PWM is that the both devices in conduction are chopped at switching frequency, it has almost twice switching loss than the other five PWM methods. The inverter output voltage varies between UDand-UD in H_PWM_L_PWM,therefore H_PWM_L_PWM is the bipolar control. However the inverter output voltage varies between UD and zero in the other five PWM methods, therefore the other five PWM methods are the unipolar control. Theswitching frequency current pulsation in H_PWM_L_PWM is almost twice than in the other five PWM methods, the permanent motor in H_PWM_L PWM has more harmonic loss. So H_PWM_L_ PWM is the lowest in efficiency. Because H_PWM-L_PWM has more switching loss, the demand to the inverter heat dissipation performance is very high. The switching loss of each device is different in H_PWM_L_ON and H_ON_L_PWM and temperature is not uniform in the heat sink surface. According to the inverter heat Dissipation performance,PWM_ON,ON_PWM and PWN_ON_PWM have higher reliability than H_PWM_L_ON, H_PWM_L_PWM and H_ON_L_PWM.B. Comparison of torque ripple in the six PWM methods The commutation toque pulsation and switching frequency toque pulsation in PMBDCSCS is different in the each PWM method. H_PWM_L_PWM is the bipolar control and has larger switching frequency current pulsation than the other five PWM methods, so its switching frequency torque pulsation is the largest in the six PWM methods. H_PWM_L_ON has the same device logic trigger signal with PWM_ON from zero to 60and with ON_PWM from 60to 120in the 120conduction mode.H_ON_L_PWM has the same device logic trigger signal with ON_PWM from zero to 60and with the PWM_ON from 60to 120in the 120conduction mode. Therefore the torque pulsation in H_PWM_L_ON and H_ON_L_PWM is larger thanin PWM ON and ON PWM. So PWM_ON, ON_PWM and PWM-ON_PWM are mainly studied and compared in the next. Assuming that phase a will be turned off, phase b will be conducted, phase c is being in conduction, the inductance and CEMF are ideal, D is duty cycle. UN is neutral point voltage. In the commutation process PWM-ON is the same with PWM_ON_PWM in the inverter output voltage equation. When the chopping device is off, the inverter output voltage equation in PWM_ON and PWM_ON_PWM can be expressed by: UA=0=EA+LA+RAiA+UN (1) UB=UdD=EB+LB+RBiB+UN (2) Uc=0=EC+LC+RCiC+UN (3)The UN in PWM_ON and PWM ON_PWM is obtained as: UN=UdD (4) When the chopping device is off, the inverter output voltage equation in ON_PWM can be expressed by: UA=0=EA+LA+RAiA+UN (5) UB=Ud=EB+LB+RBiB+UN (6) UC=Ud(1-D)=EC+LC+RCiC+UN (7)The UN in ON_PWM is obtained as: UN=Ud-UdD 8) When the chopping device is on, the inverter voltage output equation is the same in the PWM_ON, PWM_ON_PWM and ON_PWM. But the UN is different in PWM_ON, PWM_ON_PWM and ON_PWM. According to (4) and (8), UN in PWM_ON and PWM_ON_PWM is lower than in ON_PWM. According to (1) and (5), the current in phase a falls faster, the torque in phase a falls faster, but the rising velocity of phase b current is the same in PWM_ON, PWM_ON_PWM and ON_PWM, so the commutation torque pulsation is larger in ON_PWM. In the non-commutation process, the two phases in the three-phase permanent magnet motor in 120度 conduction mode is conducted and the otter phase is shut off. Only one of two devices conducted is chopping. Now assuming that phase a is shut off, the current in phase b flows from inverter to the neutral point, the current in phase c flows from the neutral point to inverter, the each device is ideal, CEMF from the neutral point to inverter is defined as positive. When phase a CEMF is more than zero and the chopping device S2 is in off-state, the phase a voltage equation isUs3+Us1=EA-EB-LB-RBiB (9)When phas a CEMF is more than zero and the chopping device S3 is off state, the phase a voltage equation is Ud+Us2+Us1=EA+EC+LC+RCiC (10) When phase a CEMF is less than zero and the chopping device S2 is in off-state, the phase a voltage equation is Ud+Us3+Us4=EA+EB+LB+RBiB (11) When phase a CEMF is less than zero and the chopping device S3 is in off state, the phase a voltage equation is Us4+Us2=EA-EC-LC-RCiC 12) When phase a CEMF is more than zero and the chopping device is in on-state, the phase a voltage equation is Ud-Ud-Us1=EA (13)When phase a CEMF is less than zero arid the chopping device is in on-state, the phase a voltage equation is Ud-0-Us4=EA (14) When the chopping device S3 is in off state, the voltage equation in the phase b and phase c is Us2+Us6=EB+Ec+LB+Lc+RBiB+Rcic (15)When the chopping device S2 is in off-state, the voltage equation in the phase b and phase c is US3+US5=EB+EC+LB+LC+RBiB+RCiC (16)When the chopping device is in on-state, the voltage equation in the phase b and phase c is Ud-US3-US2=EB+EC+LB+LC+RBiB+RCIC (17) According to (13) and (14) phase a has not freewheeling current when the chopping device is in on-state. If time trends to zero, (15) and (16) show that LBiB/dt almost equals to -EB and Lcic/dt almost equals to -Ec.When the chopping device is in off-state, the (9) and (12) show that phase a CEMF produces freewheeling current in phase a. The current is switching frequency pullsation current and causes the switching frequency torque pulsation. When the chopping device is in off state, the (10) and (11) show that phase a CEMF does not produces freewheeling current in phase a and does not also produces the switching frequency pulsation torque. In the non-commutation process, in order to eliminate the freewheeling current caused by phase a CEMF the chopping device in the PWM must be changed from S2 to S3 when the polarity of phase a CEMF change from positive to negative.PWM_ON_PWM has the change, therefore the torque pulsation caused by the phase a is eliminated. In principle the other non-commutation process is the same as the discussed process above. So the torque performance in PWM_ON_PWM is the best and the commutation frequency torque performance in PWM_ON is better than in ON_PWM.C . Comparison of EMC and vibration in the three PWM methods The PWM inverter based on switching operation has been considered as a representative noise source of conducted and radiated electromagnetic interference emissions. The conducted emission may interfere with other electronic equipment through power lines, while the radiated emission may bring malfunction, particularly to radio-controlled devices in the vicinity of the noise source. The system EMC is directly pertinent to the current pulsation in the inverter input filter inductor. The smaller the current pulsation is, the better the system EMC is. The current pulsation is the largest in H_PWM_L_PWM, and the system EMC in H_PWM_L_PWM is the worst. The system EMC in ON_PWM is better than in H_PWM_L_ON and H_ON_L_PWM.The EMC in PWM_ON and PWM_ON_PWM is better than in ON_PWM. The pulsation torque is the main source of the permanent magnet motor vibration. Thus according to the pulsation torque the sequence of the Vibration PWM_ON_PWM,PWM_ON,ON_PWM,H_PWM_L_N(H_ON_L_PWM And H_PWM_L_PWM from superiority to inferiority.III. SIMULATION VERIFICATION The PMBDCSCS is modeled in SABER and the permanent magnet motor is modeled in the circuit. The resistor, inductance and VCVS substitute stator resistor, winding inductance and phase CEMF. The permanent magnet motor parameters is: Pn=4.5kW,ne=400 rpm,P=4,Ea=70V, LA=254uH,MAB=80uH,RA=0.03 .The switching frequency is 10kHz.The load is the propeller. In each figure the upper waveform is the simulation result in PWM_ON_PWM, the middle waveform is the simulation result in ON_PWM, the lower waveform is the simulation result in PWM_ON. Fig.8 and Fig.9 prove that the torque performance in PWM_ON_PWM is the best and the commutation ripple torque in PWM_ON is better than in ON PWM. Fig.11 indicates that the commutation frequency harmonic current magnitude in the inverter dc input filter inductor in PWM_ON_PWM and PWM_ON is smaller than in ON_PWM. Fig.10 indicates that the switching frequency harmoni
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:全数字控制的桥式可逆直流脉宽调速系统设计
链接地址:https://www.renrendoc.com/p-23644720.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!