已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列前n项和的求法,求数列前n项和是数列的重要内容,也是一个难点。求等差(等比)数列的前n项和,主要是应用公式。对于一些既不是等差也不是等比的数列,就不能直接套用公式,而应根据它们的特点,对其进行变形、转化,利用化归的思想,来寻找解题途径。,一、拆项转化法,例1已知数列 中, 且 ( , ,且t为常数),求,解:当t=1时, 当 时,,分析:观察数列的通项公式,数列 可以“分解”为一个公比为t的等比数列 和一个公差为1的等差数列 ,因此,只要分别求出这两个数列的前n项之和,再把它们相加就可得 。注意等比数列前n项和公式对公比q的要求,可得如下解法:,总结:拆项转化常用于通项 是多项式的情况。这时,可把通项 拆成两个(或多个)基本数列的通项,再求和。有时也应用自然数的方幂和公式求 ,常用的有:,例2、求数列1,1+2,1+2+3,1+2+3+4 , ,1+2+3+n,的前n项和Sn。,解:该数列通项,令 , ,则,数列 的前n项和,数列 的前n项和,二、裂项相消法 常用的消项变换有:,:,:,:,:,:,:,二、裂项相消法 常用的消项变换有:,:,例3、求,解:由上面 知:,例4、求,解:其“通项”,三、 倒序相加法 课本等差数列前n项和公式 就是用倒序相加法推导的。,例5、已知数列 是首项为1,公差为2的等差数列,求,分析:注意到 且当m+n=p+q时, 有: (等差数列的性质),解: ,又,两式相加得: ,四、错位相消法 课本推导等比数列前n项和公式的方法。利用 可求两类数列的和,其通项分别是:,() (),例6、求数列 的前n项和,解: (1),(2),(1)(2),得,五、 并项法,例7,已知数列 的通项 ,求数列前2n项和,解:,令, 是首项为-3,公差为-4的等差数列,评注:用并项法把相邻的一正一负两项并作一项,从而使通项降次,得以转化为等差数列求解。,六、逐差求和法(又叫加减法,迭加法),当所给数列每依次相邻两项之间的差组成等差或等比数列时,就可用迭加法进行消元,例8,求数列 :1,3,7,13,21,31,的 和,解:,两边相加得:,注:把减数移至等号右边,就是我们平时常用的叠加法。当然,这也可叫叠加法。,例8,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 报驾校签协议还合同
- 挂钩帮扶协议书范本
- 提前施工临时协议书
- 拆除商铺隔墙协议书
- 物资报废处置协议书
- 用工安全生产协议书
- 旧房拆建邻里协议书
- 生产行业合同协议书
- 损坏苗木押金协议书
- 2025安徽南陵县县属国有企业招聘拟聘用人员笔试历年参考题库附带答案详解
- 2025年药物流行病学药物临床应用试卷答案及解析
- 运动损伤预防-洞察及研究
- GJB9764-2020可编程逻辑器件软件文档编制规范
- 2025年残疾人专职委员岗位面试问题及答案深度解析
- 山地游步道工程施工组织方案
- 2025年-(已瘦身)毛泽东思想概论 国家级课程 课件全套-电子课件
- 畜禽粪污肥料化利用的策略及实施路径
- 供应室感染知识培训内容课件
- ICU三个月进修护士
- GB/T 45952-2025科技馆运行评估规范
- 管束式除尘器技术介绍
评论
0/150
提交评论