



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3 数学归纳法学业分层测评(建议用时:45分钟)学业达标一、选择题1(2016广州高二检测)用数学归纳法证明3nn3(n3,nN*),第一步验证()An1Bn2Cn3Dn4【解析】由题知,n的最小值为3,所以第一步验证n3是否成立【答案】C2已知f(n),则()Af(n)共有n项,当n2时,f(2)Bf(n)共有n1项,当n2时,f(2)Cf(n)共有n2n项,当n2时,f(2)Df(n)共有n2n1项,当n2时,f(2)【解析】结合f(n)中各项的特征可知,分子均为1,分母为n,n1,n2的连续自然数共有n2n1个,且f(2).【答案】D3用数学归纳法证明123n2,则当nk1(nN*)时,等式左边应在nk的基础上加上()Ak21B(k1)2C.D(k21)(k22)(k23)(k1)2【解析】当nk时,等式左边12k2,当nk1时,等式左边12k2(k21)(k1)2,故选D.【答案】D4设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)k2成立时,总可推出f(k1)(k1)2成立”,那么,下列命题总成立的是()A若f(3)9成立,则当k1时,均有f(k)k2成立B若f(5)25成立,则当k4时,均有f(k)k2成立C若f(7)49成立,则当k8时,均有f(k)k2成立D若f(4)25成立,则当k4时,均为f(k)k2成立【解析】对于A,若f(3)9成立,由题意只可得出当k3时,均有f(k)k2成立,故A错;对于B,若f(5)25成立,则当k5时均有f(k)k2成立,故B错;对于C,应改为“若f(7)49成立,则当k7时,均有f(k)k2成立”【答案】D5已知命题12222n12n1及其证明:(1)当n1时,左边1,右边2111,所以等式成立(2)假设nk(k1,kN*)时等式成立,即12222k12k1成立,则当nk1时,12222k12k2k11,所以nk1时等式也成立由(1)(2)知,对任意的正整数n等式都成立判断以上评述()A命题、推理都正确B命题正确、推理不正确C命题不正确、推理正确D命题、推理都不正确【解析】推理不正确,错在证明nk1时,没有用到假设nk的结论,命题由等比数列求和公式知正确,故选B.【答案】B二、填空题6若f(n)122232(2n)2,则f(k1)与f(k)的递推关系式是_. 【解析】f(k)1222(2k)2,f(k1)1222(2k)2(2k1)2(2k2)2,f(k1)f(k)(2k1)2(2k2)2,即f(k1)f(k)(2k1)2(2k2)2.【答案】f(k1)f(k)(2k1)2(2k2)27用数学归纳法证明:.假设nk时,不等式成立,则当nk1时,应推证的目标不等式是_【解析】当nk1时,目标不等式为:.【答案】8用数学归纳法证明1222(n1)2n2(n1)22212时,由nk的假设到证明nk1时,等式左边应添加的式子是_【解析】当nk时,左边1222(k1)2k2(k1)22212.当nk1时,左边1222k2(k1)2k2(k1)22212,所以左边添加的式子为(k1)2k2.【答案】(k1)2k2三、解答题9用数学归纳法证明:13(2n1)n2(nN*)【解】(1)当n1时,左边1,右边1,等式成立(2)假设当nk(k1)时,等式成立,即13(2k1)k2,那么,当nk1时,13(2k1)2(k1)1k22(k1)1k22k1(k1)2.这就是说,当nk1时等式成立根据(1)和(2)可知等式对任意正整数n都成立10用数学归纳法证明:1n(nN*,n1)【证明】(1)当n2时,左边1,右边2,左边右边,不等式成立(2)假设当nk时,不等式成立,即1k,则当nk1时,有1kkk1,所以当nk1时不等式成立由(1)和(2)知,对于任意大于1的正整数n,不等式均成立能力提升1用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”,第二步归纳假设应写成()A假设n2k1(kN*)时正确,再推n2k3时正确B假设n2k1(kN*)时正确,再推n2k1时正确C假设nk(kN*)时正确,再推nk1时正确D假设nk(kN*)时正确,再推nk2时正确【解析】n为正奇数,在证明时,归纳假设应写成:假设n2k1(kN*)时正确,再推出n2k1时正确故选B.【答案】B2对于不等式n1(nN*),某学生的证明过程如下:(1)当n1时,11,不等式成立;(2)假设当nk(kN*)时,不等式成立,即k1,则当nk1时,(k1)1,所以当nk1时,不等式成立上述证法()A过程全都正确Bn1验证不正确C归纳假设不正确D从nk到nk1的推理不正确【解析】n1的验证及归纳假设都正确,但从nk到nk1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,这不符合数学归纳法的证题要求故选D.【答案】D3用数学归纳法证明34n252n1能被14整除的过程中,当nk1时,34(k1)252(k1)1应变形为_.【解析】当nk1时,34(k1)252(k1)18134k22552k125(34k252k1)5634k2.【答案】25(34k252k1)5634k24设函数yf(x)对任意实数x,y都有f(xy)f(x)f(y)2xy.(1)求f(0)的值;(2)若f(1)1,求f(2),f(3),f(4)的值;(3)在(2)的条件下,猜想f(n)(nN*)的表达式,并用数学归纳法加以证明【解】(1)令xy0,得f(00)f(0)f(0)200f(0)0.(2)f(1)1,f(2)f(11)1124,f(3)f(21)412219,f(4)f(31)9123116.(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030光纤激光器在医疗美容领域的技术创新
- 2025-2030光纤氢气传感器在新能源储运中的安全预警价值
- 2025-2030光纤到房间技术标准演进与智能家居场景适配性研究
- 2025-2030光纤到房间技术标准制定与商业化落地前景报告
- 2025-2030光学镜头车载应用增量市场与技术创新路线图
- 2025-2030光学相干断层扫描技术应用趋势与商业机会分析报告
- 2025-2030光子计算芯片在数据中心的应用场景探索
- 2025-2030光器件行业环保标准升级与绿色制造转型战略报告
- 2025-2030光器件封装技术演进趋势与自动化生产转型研究报告
- 2025-2030光伏组件回收技术路线比较与产业生态构建分析报告
- 2025年海上风力发电场运维管理升级与技术创新白皮书
- 2025河南省大河控股有限公司所管企业第二批社会招聘2人考试模拟试题及答案解析
- 2025上海东滩建设集团有限公司招聘考试参考试题及答案解析
- 2025年中医师承及确有专长考核真题(附答案)
- 2025广东广州市白云区民政局招聘窗口服务岗政府雇员1人笔试模拟试题及答案解析
- 2025年湖南大学事业编制管理辅助岗位招聘58人笔试备考题库及答案解析
- Q∕SY 1452.1-2012 石油装备产品包装规范 第1部分:钻机和修井机
- 妇产科产前诊断技术服务临床医师考核题(附答案)
- 校园欺凌工作台账(完整资料)
- DB33∕T 1146-2018 浙江省城市轨道交通规范
- 书法发展史501北宋前期书法
评论
0/150
提交评论