轴承检测装置的外观设计

轴承检测装置的外观设计

收藏

资源目录
跳过导航链接。
轴承检测装置的外观设计.rar
说明书.doc---(点击预览)
开题报告.doc---(点击预览)
外文翻译.doc---(点击预览)
13毕业作业周次计划.检查落实表.xls---(点击预览)
三维图纸
tu20.pdf---(点击预览)
tu19.pdf---(点击预览)
tu18.pdf---(点击预览)
tu17.pdf---(点击预览)
tu16.pdf---(点击预览)
tu15.pdf---(点击预览)
tu14.pdf---(点击预览)
tu13.pdf---(点击预览)
tu12.pdf---(点击预览)
tu11.pdf---(点击预览)
12.dwg---(点击预览)
11.dwg---(点击预览)
biye-sheji
11111.prt
13.dianchuan(p).prt
1s w.prt
21.(A)tiaozheng dianpian.prt
22.daduangai-2.prt
24.ding ju huan.prt
28.(1)30208.prt
28.(2)30208.prt
28.(3)30208.prt
28.(4)3208.prt
28.(zhuangpei)30208.prt
29.xiaoduangai-1.prt
30(B)tiaozheng dianpian.prt
31.xiaoduangai-2.prt
36.daduangai-1.prt
37.luoshuanM8-25.prt
38.(1)30211.prt
38.(2)30211.prt
38.(3)30211.prt
38.(4)30211.prt
38.(zhuangpei)-30211.prt
38.1(1)30211.prt
38.1(2)30211.prt
38.1(3)30211.prt
38.1(4)30211.prt
38.1(zhuangpei)-30211.prt
40.jian18-50.prt
bu zhuang.prt
chi lun zhou z.prt
chilun.prt
chilunzhou.prt
chu.prt
f7.prt
ff.prt
ff1.prt
ff10.prt
ff11.prt
ff15.prt
ff16.prt
ff2.prt
ff3.prt
ff4.prt
fff.prt
gaizi.prt
houbi.prt
jietizhou.prt
kai guan.prt
kuyai.prt
l;.prt
O-1.Zhuangpei(1).prt
oko.prt
Q.prt
qi (L G).prt
qi (z).prt
qi gang 1.prt
qi(H S).prt
R.prt
san ban.prt
shen jiang gan.prt
shiti.prt
tan huang.prt
w1.prt
w3.prt
xian shi qi.prt
xiao hua kuai.prt
yi.prt
z c.prt
zhou zhuang.prt
zhou.prt
zhuizhou.prt
1.pdf
1.prt
10.prt
11.bak
11.prt
111.prt
1111.prt
1112.prt
1113.prt
1114.prt
1115.prt
1116.prt
1117.prt
1118.prt
1119.prt
112.prt
113.prt
114.prt
115.prt
116.prt
117.prt
118.prt
119.prt
12.bak
12.prt
120.prt
121.prt
122.prt
123.prt
125.prt
126.prt
127.prt
13.prt
14.prt
15.prt
16.prt
17.prt
18.prt
19.prt
1m10.prt
1m4.prt
2.pdf
20.prt
2m10.prt
2m4.prt
3.pdf
3.prt
3m10.prt
3m4.prt
4.pdf
4.prt
4m10.prt
4m4.prt
5.pdf
5.prt
5m10.prt
6.prt
7.prt
8.prt
9.prt
diandongji.prt
dj.prt
j f j.prt
j f l.prt
j l 1 A0.prt
j l 10 A0.prt
j l 2 A2.prt
j l 3 A2.prt
j l 4 A3.prt
j l 5 A2.prt
j l 6 A2.prt
j l 7 A2.prt
j l 8 A2.prt
j l 9 A3.prt
j q g 2.prt
j q g 6.prt
j q g4.prt
j z z.prt
j11.prt
j121.prt
j2.prt
j3.prt
j5.prt
j6.prt
L119.prt
L120.prt
l17.prt
l4.prt
l5.prt
l6.prt
l7.prt
l8.prt
l9.prt
m10 zhu.prt
m10.prt
m12 zhu.prt
M12.prt
m4.prt
m6.prt
m8.prt
tu1.prt
tu2.prt
tu3.prt
tu4.prt
tu5.prt
tu6.prt
tu7.prt
tu8.prt
tu87.prt
打印图纸pdf
简介
压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

轴承检测装置的外观设计,轴承,检测,装置,外观设计
编号:25018593    类型:共享资源    大小:34.99MB    格式:RAR    上传时间:2019-11-15 上传人:qq77****057 IP属地:江苏
39
积分
关 键 词:
轴承 检测 装置 外观设计
资源描述:
轴承检测装置的外观设计,轴承,检测,装置,外观设计
内容简介:
AAA-ABBB-B 100170701.79907145 HT2006302071GB/T 276-199451zcjczz-0541 HT200zcjczz-043 1HT200zcjczz-032145 HT200zcjczz-021145 HT200zcjczz-01JB/ZQ4450-1986761094318.952610152551:7101zcjczz-00 1.2.,3.,4.,5. 1 2 34 5 6 737050268.1281.5274388.8704007920365.1265370512143444137.6563235302459020119180175381.4373112601851.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.80.872.5352512304511647273.9281.453.23.26.46.4 2302071HT200GB/T 276-1994132zcjczz-00-04-016.4 1 21:3105zcjczz-00-05AAA-A4010+0.05-0.0151202028354025+0.03-0.011001254545171750110704026 1.220250HBS;2.R1.5;3.1.5x45.4.GBT 1824-m.305050AB1.61.61.61.63.22840GB6170-861M10x120840GB5782-8610+0.05-0.0125+0.03-0.011850.04A0.04A0.030.031:11072zcjczz-00-02-01 1 2BBB-B204092020405078045.15+0.1-0.05100.053435843923531535 A152M4440GB9287-861M4x35440GB5782-86H7/r8101515200.03A0.043.21.61.63.23.21.170210HBS;2.R3;3.1.5x454.1:1BB10103zcjczz-00-04-01 1 2B-BCCC-C1001141209418419076.44x10300.05374050500.052530383860512+0.04-0.0313150.01H7h73061.31.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.990.0533 74.90.030.03101001530AB0.03B11201034342M12440GB9787-861M 12 x172440GB5782-860.04B201.61.61.63.23.23.2 1 21zcjczz-00-03-011:2109CBBBBB-B3302404501009202152535301102045353046957550259151002512017014221.1470198.5285.814.5160351.51554412840203051554073.93420147.120.3359.7344.64263061.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.23.9207.13.23.22302074GB/T 276-19941 21zcjczz-00-03-011031:3zcjczz-00-03 1 2BBB-BCCC-C127152506.5502051025024988013071.8355.5170301.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.4750402501002231.116.51014010.7402725.223.9244.9zcjczz-00-033.23.20.55.91:3104 1 22302071GB/T 276-199411145 HT200zcjczz-00-03-01BB2598047050412308.1330120575525290240330450880H7h84035100359.720 30 54034260240251803050290754160160512011416211.698.720.330637.1504050151.667.1250353025421021541.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.211HT200zcjczz-00-01-011302071HT200GB/T 276-19945347.9 zcjczz-00-011:3102 1 23.23.26.4BB-B14419098.82830.61308.287.4920B50H7/h7103015.468.312004.560059.617.6121.9203338151.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m. V221.5R1.5R64.5201.61.615951.690.71:2109zcjczz-00-03-01AAA-ABBB-B1130202697.6550528.311008010030317.6109109702903506909001700440359395.11200636.7620104023029050638.8535.210R20R310145.110R20R110784.1451.34.1428.71205010201101202x60506x5028026015R5R504050128.7424.1154.4573.4689.11.,;2.GB/T 1804-m.3.R3-R5. 37033510R20R70815.184.945R5090R858.11237.5943260600550540105011003010606010907085129.7149.3109.12015106040100115.120 1590502091.4115.1324.9100189.8304.14080205R153032.95020152R18.2A1020308.71028.21035403010405140310430A0.05A1.6zcjczz-00-051061:7AAA-ABBB-B 100170701.79907145 HT2006302071GB/T 276-199451zcjczz-0541 HT200zcjczz-043 1HT200zcjczz-032145 HT200zcjczz-021145 HT200zcjczz-01JB/ZQ4450-1986761094318.952610152551:7101zcjczz-00 1.2.,3.,4.,5. 1 2 34 5 6 737050268.1281.5274388.8704007920365.1265370512143444137.6563235302459020119180175381.4373112601851.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.80.872.5352512304511647273.9281.453.23.26.46.4 2302071HT200GB/T 276-1994132zcjczz-00-04-016.4 1 21:3105zcjczz-00-05AAA-A4010+0.05-0.0151202028354025+0.03-0.011001254545171750110704026 1.220250HBS;2.R1.5;3.1.5x45.4.GBT 1824-m.305050AB1.61.61.61.63.22840GB6170-861M10x120840GB5782-8610+0.05-0.0125+0.03-0.011850.04A0.04A0.030.031:11072zcjczz-00-02-01 1 2BBB-B204092020405078045.15+0.1-0.05100.053435843923531535 A152M4440GB9287-861M4x35440GB5782-86H7/r8101515200.03A0.043.21.61.63.23.21.170210HBS;2.R3;3.1.5x454.1:1BB10103zcjczz-00-04-01 1 2B-BCCC-C1001141209418419076.44x10300.05374050500.052530383860512+0.04-0.0313150.01H7h73061.31.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.990.0533 74.90.030.03101001530AB0.03B11201034342M12440GB9787-861M 12 x172440GB5782-860.04B201.61.61.63.23.23.2 1 21zcjczz-00-03-011:2109CBBBBB-B3302404501009202152535301102045353046957550259151002512017014221.1470198.5285.814.5160351.51554412840203051554073.93420147.120.3359.7344.64263061.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.23.9207.13.23.22302074GB/T 276-19941 21zcjczz-00-03-011031:3zcjczz-00-03 1 2BBB-BCCC-C127152506.5502051025024988013071.8355.5170301.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.4750402501002231.116.51014010.7402725.223.9244.9zcjczz-00-033.23.20.55.91:3104 1 22302071GB/T 276-199411145 HT200zcjczz-00-03-01BB2598047050412308.1330120575525290240330450880H7h84035100359.720 30 54034260240251803050290754160160512011416211.698.720.330637.1504050151.667.1250353025421021541.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m.211HT200zcjczz-00-01-011302071HT200GB/T 276-19945347.9 zcjczz-00-011:3102 1 23.23.26.4BB-B14419098.82830.61308.287.4920B50H7/h7103015.468.312004.560059.617.6121.9203338151.220250HBS;2.R1.5;3.1.5x45.4.GB/T 18204-m. V221.5R1.5R64.5201.61.615951.690.71:2109zcjczz-00-03-01AAA-ABBB-B1130202697.6550528.311008010030317.6109109702903506909001700440359395.11200636.7620104023029050638.8535.210R20R310145.110R20R110784.1451.34.1428.71205010201101202x60506x5028026015R5R504050128.7424.1154.4573.4689.11.,;2.GB/T 1804-m.3.R3-R5. 37033510R20R70815.184.945R5090R858.11237.5943260600550540105011003010606010907085129.7149.3109.12015106040100115.120 1590502091.4115.1324.9100189.8304.14080205R153032.95020152R18.2A1020308.71028.21035403010405140310430A0.05A1.6zcjczz-00-051061:7 存档编码:无无锡锡太太湖湖学学院院 0909 届届毕毕业业作作业业周周次次进进度度计计划划、检检查查落落实实表表系别:信机系班级:机械97 学生姓名:鲁浩课题(设计)名称:轴承检测装置的外观设计 开始日期:周次起止日期工作计划、进度 每周主要完成内容存在问题、改进方法指导教师意见并签字备 注12013.3.4下达毕业设计任务实习实训,参与工作存在问题:对于实际操作不是很了解。改进方法:参与工作,逐渐了解,参与其中。22013.3.8填写毕业设计开题报告填写毕业设计开题报告存在问题:对课题难易程度理解不够,难点分析不足,分析能力欠缺,许多问题不是很明白。改进方法:在指导老师的帮助下,进一步消化本课题。32013.3.11检查毕业设计准备情况修改完善毕业设计开题报告存在问题:对课题难点分析不足,分析能力欠缺,对课题理解不深,头脑里没设计的东西的概念改进方法:在指导老师的帮助下,整改开题报告。42013.3.16查阅参考资料查阅与设计有关的参考资料不少于10本,其中外文不少于2本存在问题:由于工作原因,空闲时间很少,查阅资料太少。改进方法:利用一切时间,去图书馆和网上查找相关资料52013.3.23轴承检测装置的外观的设计方案分析任务书、查找资料,分析系统设计步骤,确定方案存在问题:缺乏设计经验,设计方案不合理。改进方法:多去咨询导师了解检测装置的外观设计,重新确立完善设计方案。62013.4.1轴承检测装置的外观设计结构分析与计算确定系统结构,计算得出结构的尺寸存在问题:装置结构设计不合理,尺寸计算有误差公式运用错误,对机构的连接不正确。改进方法:查阅多种参考资料,改进装置的结构,提高计算正确率。系别:信机系班级:机械97 学生姓名:鲁浩课题(设计)名称:轴承检测装置的外观设计 开始日期:72013.4.15轴承检测装置外观设计各机构确定根据轴承检测装置的原理图,分析工作状况存在问题:缺乏专业知识,对各种自动机械不了解,工作情况不够清楚改进方法:多了解实际生产过程和查找资料,重新确定各种自动机械设计各部分。82013.4.20装配图绘制检测装置外观设计各机构装配图存在问题:对UG运用不熟悉,画图速度较慢改进方法:重新确定合理的表达视图,多加运用绘图软件,提高画图速度92013.4.25装配图绘制外观造型设计和检测机构装配图存在问题:装配图中部分连接地方不正确,配合标注不准确。改进方法:按自动机械设计完善连接方式,根据互换性确定配合。102013.4.28气缸图绘制气缸图存在问题:气缸图中技术要求填写不合理,明细栏填写不正确。改进方法:按机械制图要求改正不当之处。112013.5.5说明书、摘要、小结初步构思说明书和摘要,对格式进行修改存在问题:系统设计不够具体,思路不够清晰。改进方法:根据导师的要求进行修改,完善说明书和摘要。122013.5.13检查、指导设计说明书、摘要和小结编写完成设计说明书、摘要和小结存在问题:说明书的格式不规范,摘要不合理,关键词不恰当。改进方法:根据说明书规范要求更改,重新按要求编写摘要。132013.5.15上交资料、答辩整理所有资料上交指导教师,答辩资料整理欠合理,按学院要求整理并装订,进行答辩 说明: 1、“工作计划、进度”、“指导教师意见并签字”由指导教师填写,“每周主要完成内容”,“存在问题、改进方法”由学生填写。 2、本表由各系妥善归档,保存备查。Screw Compressors Mathematical 2.4 Review of Most Popular Rotor Profiles 37Fig. 2.21. “N” Rotors in 5-6 configurationFig. 2.22. “N” Rotors in 5-7 configuration38 2 Screw Compressor GeometryFig. 2.23. “N” rotors in 6/7 configurationsealing lines, small confined volumes, involute rotor contact and proper gate rotor torque distribution together with high rotor mechanical rigidity.The number of lobes required varies according to the designated compressor duty. The 3/5 arrangement is most suited for dry air compression, the4/5 and 5/6 for oil flooded compressors with a moderate pressure difference and the 6/7 for high pressure and large built-in volume ratio refrigeration applications.Although the full evaluation of a rotor profile requires more than just a geometric assessment, some of the key features of the “N” profile may be readily appreciated by comparing it with three of the most popular screw rotor profiles already described here, (a) The “Sigma” profile by Hammertoe,1979, (b) the SRM “D” profile by Absterge 1982, and (c) the “Cyclin” profile by Hough and Morris, 1984. All these rotors are shown in Fig. 2.20 where it can be seen that the “N” profiles have a greater throughput and a stiffer gate rotor for all cases when other characteristics such as the blow-hole area,confined volume and high pressure sealing line lengths are identical.Also, the low pressure sealing lines are shorter, but this is less important because the corresponding clearance can be kept small.The blow-hole area may be controlled by adjustment of the tip radii on both the main and gate rotors and also by making the gate outer diameter equal to or less than the pitch diameter. Also the sealing lines can be kept very short by constructing most of the rotor profile from circles whose cen tres are close to the pitch circle. But, any decrease in the blow-hole area will increasethe length of the sealing line on the flat rotor side. A compromise between these trends is therefore required to obtain the best result.2.4 Review of Most Popular Rotor Profiles 39Rotor instability is often caused by the torque distribution in the gate rotor changing direction during a complete cycle. The profile generation procedure described in this paper makes it possible to control the torque on the gate rotor and thus avoid such effects. Furthermore, full involute contact between the “N” rotors enables any additional contact load to be absorbed more easily than with any other type of rotor. Two rotor pairs are shown in Fig. 2.24 the first exhibits what is described as “negative” gate rotor torque while the second shows the more usual “positive” torque.Fig. 2.24. “N” with negative torque, left and positive torque, right2.4.13 Blower Rotor ProfileThe blower profile, shown in Fig. 2.25 is symmetrical. Therefore only one quarter of it needs to be specified in order to define the whole rotor. It consists of two segments, a very small circle on the rotor lobe tip and a straight line. The circle slides and generates cycloids, while the straight line generates involutes.40 2 Screw Compressor GeometryFig. 2.25. Blower profile2.5 Identification of Rotor Position in Compressor BearingsThe rotor axial and radial forces are transferred to the housing by the bearings. Rolling element bearings are normally chosen for small and medium screw compressors and these must be carefully selected to obtain a satisfactory design. Usually, two bearings are employed on the discharge end of each of the rotor shafts in order to absorb the radial and axial loads separately.Also, the distance between the rotor center lines is in part determined by the bearing size and internal clearance. Any manufacturing imperfection in the bearing housing, like displacement or eccentricity, will change the rotor position and thereby influence the compressor behaviour. The system of rotors in screw compressor bearings is presented in Fig. 2.26.The rotor shafts are parallel and their positions are defined by axes and . The bearings are labeled 1 to 4, and their clearances, as well as the manufacturing tolerances of the bearing bores, and in the x and y directions respectively, are presented in the same figure. The rotor center distance is and the axial span between the bearings is a.All imperfections in the manufacture of screw compressor rotors should fall within and be accounted for by production tolerances. These are the wrong position of the bearing bores, eccentricity of the rotor shafts, bearing clearances and imperfections and rotor misalignment. Together, they account for the rotor shafts not being parallel. Let rotor movement in the y direction contain all displacements, which are presented in Fig. 2.27, and cause virtual rotation of the rotors around the , and axes, as shown in Fig. 2.27. Let2.5 Identification of Rotor Position in Compressor Bearings 41Fig. 2.26. Rotor shafts in the compressor housing and displacement in bearingsFig. 2.27. Rotors with intersecting shafts and their coordinate systemsrotor movement in the x direction cause rotation around the , and axes, as shown in Fig. 2.28. The movement can cause the rotor shafts to intersect. However, the movement causes the shafts to become non-parallel and non-intersecting. These both change the nature of the rotor position so that the shafts can no longer be regarded as parallel. The following analytic-alapproach enables the rotor movement to be calculated and accounts for these changes.Vectors and ,now represent the helicoid surfaces of the main and gate rotors on intersecting shafts. The shaft angle is the rotation about.42 2 Screw Compressor GeometryFig. 2.28. Rotors with non-parallel and non-intersecting shafts and their coordinate systems (2.15) (2.16)Since this rotation angle is usually very small, the relationship (2.16) can be assumed. Equation (2.15) can then be simplified for further analysis.The rotationwill result in a displacement in the x direction and a displacement in the z direction, while there is no displacement in the y direction. The displacement vector becomes:In the majority of practical cases, is small compared with and only displacement in the x direction need be considered. This means that rotation around the Y axis will, effectively, only change the rotor center distance. Displacement in the z direction may be significant for the dynamic behaviour of the rotors. Displacement in the z direction will be adjusted by the rotor relative rotation around the Z axis, which can be accompanied by significant angular acceleration. This may cause the rotors to lose contact at certain stages of the compressor cycle and thus create rattling, which may increase the compressor noise. Since the rotation angle , caused by displacement within the tolerance limits, is very small, a two-dimensional analysis in the rotor end plane can be applied, as is done in the next section.2.5 Identification of Rotor Position in Compressor Bearings 43As shown in Fig. 2.28, where the rotors on the nonparallel and nonintersecting axes are presented, vectors r1= x1,y1,z1 and r2, given by (2.10) now represent the helicoid surfaces of the main and gate rotors on the intersecting shafts. is the rotation angle around the X axes given by (2.11). (2.17) (2.18)Since angle is very small, it can be expressed in simplified form as in (2.18).Further analysis is then facilitated by writing (2.17) as: The rotation will result in displacement in the y direction and dis-placement in the z direction, while there is no displacement in the x direction. The displacement vector can be written as:Although, in the majority of practical cases, displacement in the z direction is very small and therefore unimportant for consideration of rotor interference,it may play a role in the dynamic behaviour of the rotors. The displacement in the z direction will be fully compensated by regular rotation of the rotors around the Z axis. However, the angular acceleration involved in this processmay cause the rotors to lose contact at some stages of the compressor cycle. Rotation about the X axis is effectively the same as if the main or gate rotor rotated relatively through angles or respectively and the rotor backlash will be reduced by . Such an approach substantially simplifies the analysis and allows the problem to be presented in two dimensions in the rotor end plane. Although the rotor movements, described here are entirely three-dimension-al, their two-dimensional presentation in the rotor end plane section can be used for analysis. Equation (2.2) serves to calculate both the coordinates of the rotor meshing points ,on the rotor helicoids and ,in the end plane from the given rotor coordinates points and . It may also be used to determine the contact line coordinates and paths of contact between the rotors. The sealing line of screw compressor rotors is somewhat similar to the rotor contact line. Since there is a clearance gap between rotors, sealing is effected at the points of the most proximate rotor position. A convenient practice to obtain the clearance gap between the rotors is to consider the gap as the shortest distance between the rotors in a section normal to the rotor helicoids. The end plane clearance gap can then be obtained from the normal clearance by appropriate transformation.If is the normal clearance between the rotor helicoid surfaces, the cross product of the r derivatives, given in the left hand side of (2.5), which defines.螺杆压缩机2.4审查最流行的转子型线 37图.2.21.“N”转子在5-6配置图.2.22. “N”转子在5-7配置38 2螺杆式压缩机几何图.2.23. “N”转子6/7的配置密封线,小局限于卷,渐开线转子的接触和正确的门转子与转子的机械刚性高扭矩分配。所需的波瓣的数目,根据指定的压缩机的工作而变化。3/5的安排是最适合于干燥的空气压缩,4/5和5/6的石油淹没具有适度的压力差的压缩机6/ 7内置的体积比制冷的高压和大应用程序。虽然全面评估的转子型线,需要的不仅仅是一个几何评估,一些关键功能的“ N”配置文件可能它有三个最流行的螺丝比较容易理解在这里已经描述了转子型线, (一) “西格玛”配置文件 Bammert1979年, (二), (三) SRM“ D” Astberg1982年的档案,并在“ CYCLON ”个人资料霍夫和莫里斯,1984年。所有这些转子的示于图中. 2.20地方可以看出,在“N”公司有一个更大的吞吐量和一个更硬的闸转子可用于所有情况下,当其他特性,如吹孔区域,密闭体积和高压力的密封线的长度是相同的。此外,在低压力密封线短,但,这是不太重要的因为相应的间隙可以保持很小。可以控制的吹塑孔区域的尖端半径调整的两个主转子和闸转子,并通过使栅极的外径等于或小于的节圆直径。此外,密封线可以保持非常短的转子型线,圈,其中心是通过构建距离的节圆。但是,吹孔区域的任何减少会增加转子侧上的平坦的密封线的长度。之间的折衷因此,这些趋势要求,以获得最佳的结果。2.4 审查最流行的转子型线 39在闸转子的扭矩分配通常是由转子失稳一个完整的周期过程中改变方向。该配置文件的生成过程本文中描述的,使得它能够控制栅极上的扭矩转子,从而避免这种影响。此外,完整的渐开线之间的联系的“N”的转子允许任何额外的触点负载更容易被人体吸收比与任何其他类型的转子。两个转子对示于图.2.24什么被描
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:轴承检测装置的外观设计
链接地址:https://www.renrendoc.com/p-25018593.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!