




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三一轮复习数学双曲线的几何性质专项练习1、已知双曲线的右焦点为F(2,0),设A、B为双曲线上关于原点对称的两点,AF的中点为M,BF的中点为N,若原点O在以线段MN为直径的圆上,且直线AB的斜率为,则双曲线的离心率为 ( )(A) (B) (C)2 (D)42、设双曲线,若直线与两条渐近线交于,两点,相应的焦点为F(,0),若以为直径的圆恰好过点,则双曲线的离心率为 ( )A、 B、 C、 D、3、设双曲线的焦点为F1,F2,过点F2作垂直于实轴的弦PQ,若,则双曲线的离心率e等于( )A、+1 B、 C、 D、+14、设双曲线的半焦距c,直线过,两点。已知原点到直线的距离为,则双曲线的离心率为( )A、2 B、 C、 D、5、双曲线的左、右焦点分别为,是双曲线上一点,的中点在轴上,线段 的长为,则该双曲线的离心率为( )A. B. C. D.6、双曲线1的一条渐近线与圆(x2)2y22相交于M、N两点且|MN|2,则此双曲线的离心率是( )A B C D7设双曲线的右焦点为,过点作与轴垂直的直线交两渐近线于、两点,与双曲线的其中一个交点为,设为坐标原点,若,且,则该双曲线的离心率为( )A B C D8已知双曲线左右焦点分别为、,点为其右支上一点,且,若,成等差数列,则该双曲线的离心率为 ( )A B C D 9、已知和分别是双曲线()的左、右焦点,P是双曲线左支的一点,则该双曲线的离心率为( )(第9题)A、 B、 C、 D、10已知点P是双曲线C:左支上一点,F1,F2是双曲线的左、右两个焦点,且PF1PF2,PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是 ( )A B2 C D11.已知双曲线c: ,以右焦点F为圆心,|OF|为半径的圆交双曲线两渐近线于点M、N (异于原点O),若|MN|=,则双曲线C的离心率 是 ( )A. B. C. 2D. 12、已知分别是双曲线的左、右焦点。若C上存在一点P,使得,则C的离心率的取值范围是( )A、 B、 C、 D、13、已知双曲线的左焦点为F,右顶点A,上,下虚轴端点B、C,若FB交CA于D,且,则双曲线的离心率( )A、 B、 C、 D、14、设双曲线C:的右焦点为F,左右顶点分别为,过F且与双曲线C的一条渐近线平行的直线与另一条渐近线相较于P,若P恰好在以为直径的圆上,则双曲线的离心率为 15、斜率为2的直线过双曲线的右焦点且与双曲线的左右两支分别相交,则双曲线的离心率的取值范围 16已知点P是双曲线右支上一点,、分别是双曲线的左、右焦点,I为的内心,若成立,则双曲线的离心率为 。17、设双曲线C:(a0,b0)的右焦点为F,O为坐标原点若以F为圆心,FO为半径的圆与双曲线C的一条渐近线交于点A(不同于O点),则OAF的面积为 18. 已知点为双曲线的虚轴端点,是双曲线的焦点,为坐标原点.若在上的投影恰好为,则此双曲线的离心率_19.左焦点为的双曲线的右支上存在点,使得直线与圆 相切,则双曲线的离心率取值范围是 。参考答案1、已知双曲线的右焦点为F(2,0),设A、B为双曲线上关于原点对称的两点,AF的中点为M,BF的中点为N,若原点O在以线段MN为直径的圆上,且直线AB的斜率为,则双曲线的离心率为 ( C )(A) (B) (C)2 (D)42、设双曲线,若直线与两条渐近线交于,两点,相应的焦点为F(,0),若以为直径的圆恰好过点,则双曲线的离心率为 ( D )A、 B、 C、 D、3、设双曲线的焦点为F1,F2,过点F2作垂直于实轴的弦PQ,若,则双曲线的离心率e等于( A )A、+1 B、 C、 D、+14、设双曲线的半焦距c,直线过,两点。已知原点到直线的距离为,则双曲线的离心率为( A )A、2 B、 C、 D、5、双曲线的左、右焦点分别为,是双曲线上一点,的中点在轴上,线段 的长为,则该双曲线的离心率为( D )A. B. C. D.6、双曲线1的一条渐近线与圆(x2)2y22相交于M、N两点且|MN|2,则此双曲线的离心率是(C )A B C D7设双曲线的右焦点为,过点作与轴垂直的直线交两渐近线于、两点,与双曲线的其中一个交点为,设为坐标原点,若,且,则该双曲线的离心率为( C )A B C D8已知双曲线左右焦点分别为、,点为其右支上一点,且,若,成等差数列,则该双曲线的离心率为(A)A B C D 9、已知和分别是双曲线()的左、右焦点,P是双曲线左支的一点,则该双曲线的离心率为( C )(第9题)A、 B、 C、 D、10已知点P是双曲线C:左支上一点,F1,F2是双曲线的左、右两个焦点,且PF1PF2,PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是 ( A )A B2 C D11.已知双曲线c: ,以右焦点F为圆心,|OF|为半径的圆交双曲线两渐近线于点M、N (异于原点O),若|MN|=,则双曲线C的离心率 是( C )A. B. C. 2D. 解:,所以12、已知分别是双曲线的左、右焦点。若C上存在一点P,使得,则C的离心率的取值范围是( B )A、 B、 C、 D、13、已知双曲线的左焦点为F,右顶点A,上,下虚轴端点B、C,若FB交CA于D,且,则双曲线的离心率( C )A、 B、 C、 D、14、设双曲线C:的右焦点为F,左右顶点分别为,过F且与双曲线C的一条渐近线平行的直线与另一条渐近线相较于P,若P恰好在以为直径的圆上,则双曲线的离心率为 15、斜率为2的直线过双曲线的右焦点且与双曲线的左右两支分别相交,则双曲线的离心率的取值范围 16已知点P是双曲线右支上一点,、分别是双曲线的左、右焦点,I为的内心,若成立,则双曲线的离心率为 2 。17、设双曲线C:(a0,b0)的右焦点为F,O为坐标原点若以F为圆心,FO为半径的圆与双
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作总结:团队协作与沟通方式
- 企业规划发展方向和目标
- 北宋绘画新章:高克明《溪山雪意图》的艺术探索与文化映照
- 创新与转型:江西畅行高速公路服务区经营模式深度剖析与设计研究
- 1,3-偶极环加成:新型含1,2,3-三唑及喹喔啉类杂环衍生物的合成与探索
- 消费偏好变化趋势-洞察及研究
- 钢铁圆钢购销合同包含环保合规性要求
- 个人汽车抵押贷款担保合同
- 咨询分析方案
- 夏天看房活动方案策划
- 基础教育教学成果奖评审组织实施方案
- 建行考试题目及答案
- 医院拆除工程方案范本(3篇)
- 第3课 团团圆圆过中秋 第1课时(课件)2025-2026学年道德与法治二年级上册统编版
- 第6课 从小爱科学 第1课时(课件)2025-2026学年道德与法治三年级上册统编版
- 2025年铁路建设工程质量安全监督管理人员考试试题及答案
- 2025年度事业单位公开招聘考试《综合应用能力(E类)药剂专业》新版真题卷(附解析)
- 成都麓湖生态城规划建筑产品线
- 华为企业应收账款管理【案例分析】
- 应用化学专业英语unit.ppt
- 原地侧向投掷垒球教案
评论
0/150
提交评论