资源目录
压缩包内文档预览:
编号:25311679
类型:共享资源
大小:2.79MB
格式:ZIP
上传时间:2019-11-19
上传人:遗****
认证信息
个人认证
刘**(实名认证)
湖北
IP属地:湖北
15
积分
- 关 键 词:
-
普通
机床
自动化
改造
- 资源描述:
-
0-普通机床的自动化改造,普通,机床,自动化,改造
- 内容简介:
-
普通车床的自动化改造摘 要随着当今工业设备对精密程度的要求越来越高,加工设备的机械加工设备的加工的精密程度也要求越来越高。而在中国的机械加工设备的车床中普通车床占了很大比例。这已经越来越制约着当今工业的发展。而数控机床由于价格昂贵,且需要较高技术的加工工人。所以对机床进行自动化改造很是必要。本篇论文是在对普通卧式车床C6150的基础上对其进行自动化改造。作者在搜索、查阅研究大量有关资料的基础上,对机床自动化改造技术进行了深入的研究和分析,并描述了机床控制系统的设计。整个改造过程主要对车床纵、横向进给系统进行改造,选用自动转位刀架,由脉冲发生器来加工所需要的螺纹。整个控制系统以8031型号的单片机为中心,通过编程对机床的驱动设备进行控制以达到所需要的加工程度。关键词:机床改造; 自动化机床; 控制系统ABSTRACTWith the development of industry equipment, the precision required of industry equipment is more and more high. The more and more precision of equipment which machined the industry equipment is required. But in China the common lathe have a very great comparison in the machined equipment, this already restrict the development of industrial nowadays. But the CN lathe is more expensive, and needed workers with higher technically. So it is a necessity very much to modify the common lathe to lathes automatic. This paper is in the foundation of the commonness horizontal lather C6150 and modified it to Lathes automatic.The author has performed the further research and for the lathes automatic modification on the basis of the constant consultation of abundant relative documents, which focuses on describing the design of control of the machine. The main to modify the lathe is to modify the portrait, horizontal enter to the system in the Whole modification process and choose the automatic knife rest and be processed the thread need by pulser. The whole control system with the CPU of 8031 is to control the machine for center, through a plait distance drive tool machine an equipments to carry on control to attain need of process degree.Key words: Machinery Tool Reform; Lathes automatic; Servo system 普通车床的自动化改造目 录第1章 绪论11.1数控机床与数控技术11.1.1数控机床与发展趋势11.1.2数控技术21.1.3数控技术发展趋势41.1.4数控机床目前在工业中的地位61.2数控改造的必要性61.2.1机床与生产线数控化改造的市场71.2.2机床数控化改造的必要性71.3数控化改造的内容及优缺81.4对我国数控技术和产业化发展的战略见解101.4.1形势考虑101.4.2发展策略101.5本文的选题及主要研究内容111.5.1本文的选题111.5.2主要研究内容11第2章 数控车床总体改造方案及机械部分设计132.1设计要求132.1.1设计基本思路132.1.2改造方案的确定132.1.3设计目的132.1.4总体方案设计152.2滚珠丝杠的设计计算与选用152.2.1滚珠丝杠152.2.2纵向滚珠丝杠的设计与计算162.2.3横向滚珠丝杠的设计与计算242.2.4滚珠丝杠的安装与使用322.3电机与滚珠丝杠连接用一级减速齿轮的设计与校核342.3.1齿轮传动342.3.2纵向减速齿轮的设计与校核352.3.3横向减速齿轮的设计与校核392.4进给系统的步进电动机的计算与选择422.4.1步进电动机422.4.2纵向电机的计算与选择442.4.3横向电机的计算与选择472.5电动刀架选择与介绍50第3章 主轴脉冲发生器介绍与选型523.1光电编码器原理523.2主轴脉冲发生器的安装533.3主轴脉冲发生器的选择53第4章 普通车床自动化改造的单片机控制564.1系统设计564.2用单片机控制系统电路584.2.1存储器扩张电路584.2.2面板操作键和功能选择开关614.2.3功能选择开关624.2.4键盘、显示器接口电路634.2.5步进电动机驱动电路设计644.2.6 M.S.T接口674.2.7辅助电路设计67第5章 小结69参考文献70英文原文71中文译文76致 谢8183第1章 绪论1.1数控机床与数控技术1.1.1数控机床与发展趋势(1)数控机床:1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。它与人类在农业、工业社会中创造的那些只是增强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。从此,传统机床产生了质的变化。近半个世纪以来,数控系统经历了两个阶段和六代的发展。数控(NC)阶段(19521970年)早期计算机的运算速度低,对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。人们不得不采用数字逻辑电路搭成一台机床专用计算机作为数控系统,被称为硬件连接数控(HARD-WIRED NC),简称为数控(NC)。随着元器件的发展,这个阶段历经了三代,即1952年的第一代-电子管;1959年的第二代-晶体管;1965年的第三代-小规模集成电路。计算机数控(CNC)阶段(1970年现在)到1970年,通用小型计算机业已出现并成批生产。于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段(把计算机前面应有的通用两个字省略了)。到1971年,美国INTEL公司在世界上第一次将计算机的两个最核心的部件-运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处理器(MICROPROCESSOR),又可称为中央处理单元(简称CPU)。到1974年微处理器被应用于数控系统。这是因为小型计算机功能太强,控制一台机床能力有富裕(故当时曾用于控制多台机床,称之为群控),不如采用微处理器经济合理。而且当时的小型机可靠性也不理想。早期的微处理器速度和功能虽还不够高,但可以通过多处理器结构来解决。由于微处理器是通用计算机的核心部件,故仍称为计算机数控。到了1990年,PC机(个人计算机,国内习惯称微机)的性能已发展到很高的阶段,可以满足作为数控系统核心部件的要求。数控系统从此进入了基于PC的阶段。总之,计算机数控阶段也经历了三代。即1970年的第四代-小型计算机;1974年的第五代-微处理器和1990年的第六代-基于PC(国外称为PC-BASED)。还要指出的是,虽然国外早已改称为计算机数控(即CNC)了,而我国仍习惯称数控(NC)。所以我们日常讲的数控,实质上已是指计算机数控了。1.1.2数控技术 随着计算机、微电子、信息、自动控制、精密检测及机械制造技术的高速发展,机床数控技术有了长足的进步。近几年一些相关技术的发展,如刀具及新材料的发展,主轴伺服和进给伺服、超高速切削等技术的发展,以及对机械产品质量的要求越来越高等,加速了数控机床的发展。目前数控机床正朝着高速度、高精度、高工序集中度、高复合化和高可靠性等方向发展。世界数控技术及其装备发展趋势主要体现在以下几个方面。 高速高效高精度高生产率。由于数控装置及伺服系统功能的改进,主轴转速和进给速度大大提高,减少了切削时间和非切削时间。加工中心的进给速度已达到80m/min120m/min,进给加速度达9.8m/s219.6m/s2,换刀时间小于1s。高加工精度。以前汽车零件精度的数量级通常为10 m,对精密零件要求为1 m,随着精密产品的出现,对精度要求提高到0.1 m,有些零件甚至已达到0.01 m,高精密零件要求提高机床加工精度,包括采用温度补偿等。微机电加工,其加工零件尺寸大小一般在1mm 以下,表面粗糙度为纳米数量级,要求数控系统能直接控制纳米机床。柔性化柔性化包括两个方面的柔性:一是数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,便于不同用户的需求;二是DNC 系统的柔性,同一DNC系统能够依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥DNC 系统的效能。工艺复合化和多轴化数控机床的工艺复合化,是指工件在一台机床上装夹后,通过自动换刀、旋转主轴头或旋转工作台等各种措施,完成多工序、多表面的复合加工。已经出现了集钻、镗、铣功能于一身的数控机床,可完成钻、镗、铣、扩孔、铰孔、攻螺纹等多工序的复合数控加工中心,以及车削加工中心,钻削、磨削加工中心,电火花加工中心等。此外数控技术的进步也提供了多轴控制和多轴联动控制功能。 实时智能化早期的实时系统通常针对相对简单的理想环境,其作用是如何调度任务,以确保任务在规定期限内完成。而人工智能,则试图用计算模型实现人类的各种智能行为。科学发展到今天,实时系统与人工智能已实现相互结合,人工智能正向着具有实时响应的更加复杂的应用领域发展,由此产生了实时智能控制这一新的领域。在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展,如自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。例如,在数控系统中配置编程专家系统、故障诊断专家系统、参数自动设定和刀具自动管理及补偿等自适应调节系统;在高速加工时的综合运动控制中引入提前预测和预算功能、动态前馈功能;在压力、温度、位置、速度控制等方面采用模糊控制,使数控系统的控制性能大大提高,从而达到最佳控制的目的。 结构新型化20 世纪90 年代一种完全不同于原来数控机床结构的新型数控机床被开发成功。这种新型数控机床被称为“6条腿”的加工中心或称虚拟轴机床(有的还称为并联机床),它能在没有任何导轨和滑台的情况下,采用能够伸缩的“6条腿”(伺服轴)支撑并联,并与安装主轴头的上平台和安装工件的下平台相连。它可实现多坐标联动加工,其控制系统结构复杂,加工精度、加工效率较普通加工中心高210 倍。这种数控机床的出现将给数控机床技术带来重大变革和创新。 编程技术自动化随着数控加工技术的迅速发展,设备类型的增多,零件品种的增加以及零件形状的日益复杂,迫切需要速度快、精度高的编程,以便于对加工过程的直观检查。为弥补手工编程和NC 语言编程的不足,近年来开发出多种自动编程系统,如图形交互式编程系统、数字化自动编程系统、会话式自动编程系统、语音数控编程系统等,其中图形交互式编程系统的应用越来越广泛。图形交互式编程系统是以计算机辅助设计(CAD)软件为基础,首先形成零件的图形文件,然后再调用数控编程模块,自动编制加工程序,同时可动态显示刀具的加工轨迹。其特点是速度快、精度高、直观性好、使用简便,已成为国内外先进的CAD/CAM 软件所采用的数控编程方法。目前常用的图形交互式软件有Master CAM、Cimatron、Pro/E、UG、CAXA、Solid Works、CATIA等。 集成化数控系统采用高度集成化芯片,可提高数控系统的集成度和软、硬件运行速度,应用平板显示技术可提高显示器性能。平板显示器(FPD)具有科技含量高、质量小、体积小、功耗低、便于携带等优点,可实现超大规模显示,成为与CRT 显示器抗衡的新兴显示器,是21 世纪显示器主流。它应用先进封装和互连技术,将半导体和表面安装技术融于一体,通过提高集成电路密度,减小互连长度和数量来降低产品价格、改进性能、减小组件尺寸、提高系统的可靠性。 开放式闭环控制模式采用通用计算机组成的总线式、模块化、开放、嵌入式体系结构,便于裁减、扩展和升级,可组成不同档次、不同类型、不同集成程度的数控系统。闭环控制模式是针对传统数控系统仅有的专用型封闭式开环控制模式提出的。由于制造过程是一个有多变量控制和加工工艺综合作用的复杂过程,包括诸如加工尺寸、形状、振动、噪声、温度和热变形等各种变化因素,因此,要实现加工过程的多目标优化,必须采用多变量的闭环控制,在实时加工过程中动态调整加工过程变量。在加工过程中采用开放式通用型实时动态全闭环控制模式,易于将计算机实时智能技术、多媒体技术、网络技术、CAD/CAM、伺服控制、自适应控制、动态数据管理及动态刀具补偿、动态仿真等高新技术融于一体,构成严密的制造过程闭环控制体系,从而实现集成化、智能化、网络化。1.1.3数控技术发展趋势(1)数控技术装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术:(5)传感器技术:(6)软件技术等。(2)数控技术的发展趋势 数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面。高速、高精加工技术是装备的新趋势 效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)将其确定21世纪的中心研究方向之一。 在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。 目前高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,己经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNAT工公司的HyperMach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12000r/mm和lgo 在加工精度方面,近10年来,普通级数控机床的加工精度已由l0um提高到5 m,精密级加工中心则从35um,提高到1一1.5m,并且超精密加工精度已开始进入纳米级(0. O1 u动。 在可靠性方面,国外数控装置的MTBF值己达6 OOOh以上,伺服系统的MTBF值达到30000h以上,表现出非常高的可靠性。为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。智能化、开放式、网络化成为当代数控系统发展的主要趋势 21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。数控设备更注重安全性、操作性 数控设备是集机电一体化的产品,由于其自动化程度高,所以对其安全性和可操作性有了更高的要求。1.1.4数控机床目前在工业中的地位 近年来我国企业的数控机床占有率逐年上升,在大中企业已有较多的使用,在中小企业甚至个体企业中也普遍开始使用。2001年国内数控金切机床产量已达1. 8万台,比上年增长28. 5%,机床行业产值数控化率从2000年的17. 4%提高到2001年的22. 7%。2001年,我国机床工业产值己进入世界第5名,机床消费额在世界排名上升到第3位,达47. 39亿美元,仅次于美国的53. 67亿美元,消费额比上一年增长25%。但由于国产数控机床不能满足市场的需求,使我国机床的进口额呈逐年上升态势,2001年进口机床跃升至世界第2位,达24. 06亿美元,比上年增长27。 近年来我国出口额增幅较大的数控机床有数控车床、数控磨床、数控特种加工机床、数控剪板机、数控成形折弯机、数控压铸机等,普通机床有钻床、锯床、插床、拉床、组合机床、液压压力机、木工机床等。出口的数控机床品种以中低档为主。1.2数控改造的必要性1.2.1机床与生产线数控化改造的市场(1)机床数控化改造的市场我国目前机床总量380余万台,而其中数控机床总数只有11.34万台,即我国机床数控化率不到3。近10年来,我国数控机床年产量约为0.60.8万台,年产值约为18亿元。机床的年产量数控化率为6。我国机床役龄10年以上的占60以上;10年以下的机床中,自动/半自动机床不到20,FMC/FMS等自动化生产线更屈指可数(美国和日本自动和半自动机床占60以上)。可见我们的大多数制造行业和企业的生产、加工装备绝大数是传统的机床,而且半数以上是役龄在10年以上的旧机床。用这种装备加工出来的产品普遍存在质量差、品种少、档次低、成本高、供货期长,从而在国际、国内市场上缺乏竞争力,直接影响一个企业的产品、市场、效益,影响企业的生存和发展。所以必须大力提高机床的数控化率。(2)进口设备和生产线的数控化改造市场我国自改革开放以来,很多企业从国外引进技术、设备和生产线进行技术改造。据不完全统计,从19791988年10年间,全国引进技术改造项目就有18446项,大约165.8亿美元。这些项目中,大部分项目为我国的经济建设发挥了应有的作用。但是有的引进项目由于种种原因,设备或生产线不能正常运转,甚至瘫痪,使企业的效益受到影响,严重的使企业陷入困境。一些设备、生产线从国外引进以后,有的消化吸收不好,备件不全,维护不当,结果运转不良;有的引进时只注意引进设备、仪器、生产线,忽视软件、工艺、管理等,造成项目不完整,设备潜力不能发挥;有的甚至不能启动运行,没有发挥应有的作用;有的生产线的产品销路很好,但是因为设备故障不能达产达标;有的因为能耗高、产品合格率低而造成亏损;有的已引进较长时间,需要进行技术更新。种种原因使有的设备不仅没有创造财富,反而消耗着财富。这些不能使用的设备、生产线是个包袱,也是一批很大的存量资产,修好了就是财富。只要找出主要的技术难点,解决关键技术问题,就可以最小的投资盘活最大的存量资产,争取到最大的经济效益和社会效益。这也是一个极大的改造市场。1.2.2机床数控化改造的必要性(1)微观看改造的必要性从微观上看,数控机床比传统机床有以下突出的优越性,而且这些优越性均来自数控系统所包含的计算机的威力。可以加工出传统机床加工不出来的曲线、曲面等复杂的零件。由于计算机有高超的运算能力,可以瞬时准确地计算出每个坐标轴瞬时应该运动的运动量,因此可以复合成复杂的曲线或曲面。可以实现加工的自动化,而且是柔性自动化,从而效率可比传统机床提高37倍。由于计算机有记忆和存储能力,可以将输入的程序记住和存储下来,然后按程序规定的顺序自动去执行,从而实现自动化。数控机床只要更换一个程序,就可实现另一工件加工的自动化,从而使单件和小批生产得以自动化,故被称为实现了柔性自动化。加工零件的精度高,尺寸分散度小,使装配容易,不再需要修配。可实现多工序的集中,减少零件 在机床间的频繁搬运。拥有自动报警、自动监控、自动补偿等多种自律功能,因而可实现长时间无人看管加工。由以上五条派生的好处。如:降低了工人的劳动强度,节省了劳动力(一个人可以看管多台机床),减少了工装,缩短了新产品试制周期和生产周期,可对市场需求作出快速反应等等。以上这些优越性是前人想象不到的,是一个极为重大的突破。此外,机床数控化还是推行FMC(柔性制造单元)、FMS(柔性制造系统)以及CIMS(计算机集成制造系统)等企业信息化改造的基础。数控技术已经成为制造业自动化的核心技术和基础技术。(2)宏观看改造的必要性从宏观上看,工业发达国家的军、民机械工业,在70年代末、80年代初已开始大规模应用数控机床。其本质是,采用信息技术对传统产业(包括军、民机械工业)进行技术改造。除在制造过程中采用数控机床、FMC、FMS外,还包括在产品开发中推行CAD、CAE、CAM、虚拟制造以及在生产管理中推行MIS(管理信息系统)、CIMS等等。以及在其生产的产品中增加信息技术,包括人工智能等的含量。由于采用信息技术对国外军、民机械工业进行深入改造(称之为信息化),最终使得他们的产品在国际军品和民品的市场上竞争力大为增强。而我们在信息技术改造传统产业方面比发达国家约落后20年。如我国机床拥有量中,数控机床的比重(数控化率)到1995年只有1.9,而日本在1994年已达20.8,因此每年都有大量机电产品进口。这也就从宏观上说明了机床数控化改造的必要性。1.3数控化改造的内容及优缺(1)国外改造业的兴起在美国、日本和德国等发达国家,它们的机床改造作为新的经济增长行业,生意盎然,正处在黄金时代。由于机床以及技术的不断进步,机床改造是个永恒的课题。我国的机床改造业,也从老的行业进入到以数控技术为主的新的行业。在美国、日本、德国,用数控技术改造机床和生产线具有广阔的市场,已形成了机床和生产线数控改造的新的行业。在美国,机床改造业称为机床再生(Remanufacturing)业。从事再生业的著名公司有:Bertsche工程公司、ayton机床公司、Devlieg-Bullavd(得宝)服务集团、US设备公司等。美国得宝公司已在中国开办公司。在日本,机床改造业称为机床改装(Retrofitting)业。从事改装业的著名公司有:大隈工程集团、岗三机械公司、千代田工机公司、野崎工程公司、滨田工程公司、山本工程公司等。(2)数控化改造的内容机床与生产线的数控化改造主要内容有以下几点:其一是恢复原功能,对机床、生产线存在的故障部分进行诊断并恢复;其二是NC化,在普通机床上加数显装置,或加数控系统,改造成NC机床、CNC机床;其三是翻新,为提高精度、效率和自动化程度,对机械、电气部分进行翻新,对机械部分重新装配加工,恢复原精度;对其不满足生产要求的CNC系统以最新CNC进行更新;其四是技术更新或技术创新,为提高性能或档次,或为了使用新工艺、新技术,在原有基础上进行较大规模的技术更新或技术创新,较大幅度地提高水平和档次的更新改造。(3)数控改造中主要机械部件改装探讨一台新的数控机床,在设计上要达到:有高的静动态刚度;运动副之间的摩擦系数小,传动无间隙;功率大;便于操作和维修。机床数控改造时应尽量达到上述要求。不能认为将数控装置与普通机床连接在一起就达到了数控机床的要求,还应对主要部件进行相应的改造使其达到一定的设计要求,才能获得预期的改造目的。滑动导轨副 对数控车床来说,导轨除应具有普通车床导向精度和工艺性外,还要有良好的耐摩擦、磨损特性,并减少因摩擦阻力而致死区。同时要有足够的刚度,以减少导轨变形对加工精度的影响,要有合理的导轨防护和润滑。齿轮副一般机床的齿轮主要集中在主轴箱和变速箱中。为了保证传动精度,数控机床上使用的齿轮精度等级都比普通机床高。在结构上要能达到无间隙传动,因而改造时,机床主要齿轮必须满足数控机床的要求,以保证机床加工精度。滑动丝杠与滚珠丝杠丝杠传动直接关系到传动链精度。丝杠的选用主要取决于加工件的精度要求和拖动扭矩要求。被加工件精度要求不高时可采用滑动丝杠,但应检查原丝杠磨损情况,如螺距误差及螺距累计误差以及相配螺母间隙。一般情况滑动丝杠应不低于6级,螺母间隙过大则更换螺母。采用滑动丝杠相对滚珠丝杠价格较低,但难以满足精度较高的零件加工。滚珠丝杠摩擦损失小,效率高,其传动效率可在90%以上;精度高,寿命长;启动力矩和运动时力矩相接近,可以降低电机启动力矩。因此可满足较高精度零件加工要求。安全防护 必须以安全为前提。在机床改造中要根据实际情况采取相应的措施,切不可忽视。滚珠丝杠副是精密元件,工作时要严防灰尘特别是切屑及硬砂粒进入滚道。在纵向丝杠上也可加整体铁板防护罩。大拖板与滑动导轨接触的两端面要密封好,绝对防止硬质颗粒状的异物进入滑动面损伤导轨。1.4对我国数控技术和产业化发展的战略见解1.4.1形势考虑 我国是制造大国,在世界产业转移中要尽量接受前端而不是后端的转移,即要掌握先进制造核心技术,否则在新一轮国际产业结构调整中,我国制造业将进一步“空芯”。我们以资源、环境、市场为代价,交换得到的可能仅仅是世界新经济格局中的国际“加工中心”和“组装中心”,而非掌握核心技术的制造中心的地位,这样将会严重影响我国现代制造业的发展进程。 我们应站在国家安全战略的高度来重视数控技术和产业问题,首先从社会安全看,因为制造业是我国就业人口最多的行业,制造业发展不仅可提高人民的生活水平,而且还可缓解我国就业的压力,保障社会的稳定;其次从国防安全看,西方发达国家把高精尖数控产品都列为国家的战略物质,对我国实现禁运和限制,“东芝事件”和“考克斯报告”就是最好的例证。1.4.2发展策略 从我国基本国情的角度出发,以国家的战略需求和国民经济的市场需求为导向,以提高我国制造装备业综合竞争能力和产业化水平为目标,用系统的方法,选择能够主导21世纪初期我国制造装备业发展升级的关键技术以及支持产业化发展的支撑技术、配套技术作为研究开发的内容,实现制造装备业的跨跃式发展。 强调市场需求为导向,即以数控终端产品为主,以整机(如量大面广的数控车床、铣床、高速高精高性能数控机床、典型数字化机械、重点行业关键设备等)带动数控产业的发展。重点解决数控系统和相关功能部件(数字化伺服系统与电机、高速电主轴系统和新型装备的附件等)的可靠性和生产规模问题。没有规模就不会有高可靠性的产品;没有规模就不会有价格低廉而富有竞争力的产品;当然,没有规模中国的数控装备最终难以有出头之日。 在高精尖装备研发方面,要强调产、学、研以及最终用户的紧密结合,以“做得出、用得上、卖得掉”为目标,按国家意志实施攻关,以解决国家之急需。 在竞争前数控技术方面,强调创新,强调研究开发具有自主知识产权的技术和产品,为我国数控产业、装备制造业乃至整个制造业的可持续发展奠定基础。1.5本文的选题及主要研究内容1.5.1本文的选题在我签约的徐州华东机械厂建材机械分厂内,共有卧式车床两台,建材厂主要生产大型建材设备,所以要常常加工好多小的零件,如螺钉,小型的轴套等。由于这是常年生产建材设备,所以所要加工的零件也需要很多。因为零件太多,像垫片之类,有时就是加工好了这个又缺少另一个,而用普通卧式车床去加工有时一个人加工的东西都会误差很大,这样给所造设备带来很多的小问题。而如果要新买一台新的数控车床,一是总体成本太高,因为性价比不是太高,容易浪费资源,二是建材厂没有工人精通数控车床,所以要培训工人一定又要花费很多时间影响生产进度。所以设想决定对其数控改造,改造的同时让操作人员一直在旁边学习,学习怎么改装,怎么安装,并讲解如何使用。把所要加工的零件程序输入到存储器中,用到时直接调用即可,这样一个人即可操作两台机床,而且效率提高了好大,精度也会提高很高,会为厂带来很大经济利益。1.5.2主要研究内容 1. C6150车床数控化改造总体机械部件设计。2.进给系统的设计和选用。包括了进给滚珠丝杠的设计与选用,消隙减速齿轮系的设计计算与校核,进给用步进电机的选择与校核。3主轴脉冲发生器的安装4刀架的选用5.控制系统的设计。选用8031型号的单片机控制进给系统与刀架,并把脉冲发生器的数据通过单片机来加工螺纹。 第2章 数控车床总体改造方案及机械部分设计2.1设计要求2.1.1设计基本思路 改造C6150车床的基本思路是把原来的机床进行大修,只保留机床导轨、主轴、溜板、尾座等部件,其余的全部撤除。带之以滚珠丝杠和步进电机,用单片机系统来驱动各轴的运动。经过严密的计算和论证,选择丝杠和驱动电机,根据使用要求,选择系统配置和设计控制电路。2.1.2改造方案的确定C6150车床主要用于对中小型轴类、盘类以及螺纹零件的加工,这些零件加工工艺要求机床应完成的工作内容有:控制主轴正反转和实现其不同切削速度的主轴变速;刀架能实现纵向和横向的进给运动,并具备在换刀点自动改变四个刀位完成选择刀具;冷却泵、润滑泵的启停:加工螺纹时,应保证主轴转一转,刀架移动一个被加工螺纹的螺距或导程。这些工作内容,就是数控化改造数控系统控制的对象。察看C6150车床及有关资料,并且参照数控车床的改造经验,确定总体改造方案为:对机床的改造部位是:拆掉手动刀架和小拖板装上数控刀架;拆掉普通丝杆、光杆进给箱、溜板箱,换上滚珠丝杠螺母副;主轴后端加一光电编码器用波纹管连接,供加工螺纹使用由于改造设计的是简易型经济数控,所以在考虑具体方一案时,基本原则是在满足需要的前提下,对于机床尽可能减小改动量,以降低成本。总体改造如下图所示。对该机床进行机械修理以便恢复机械精度要求,修理的主要目的是恢复机床导轨、主轴、拖板的精度,撤除机床主轴箱和溜板箱内的传动部件以及传动丝杠,只保留导轨、主轴、溜板、尾座。修理后已恢复其主要部件的精度。2.1.3设计目的利用数控系统对纵、横向进给系统进行开环控制,纵向脉冲当量为0.005mm/脉冲,横向脉冲为0.005mm/脉冲,驱动元件采用步进电动机,传动系统采用滚珠丝杠副,刀架采用自动转位刀架,主轴采用变频器控制。图一 C6150改造后系统传动图2.1.4总体方案设计由于是经济型数控改造,所以在考虑具体方案时,基本原则是在满足使用要求的前提下,对机床的改动尽可能少,以降低成本。根据C616车床有关资料,总体方案的确定如图22所示:采用单片机8031控制系统对数据进行计算处理。步进电动机经同步带轮传动或直接传动后,带动滚珠丝杠转动,从而实现纵向、横向进给运动。主轴变速采用变频器调速控制。2.2滚珠丝杠的设计计算与选用2.2.1滚珠丝杠滚珠丝杠是将回转运动转化为直线运动,或将直线运动转化为回转运动的理想的产品。滚珠丝杠由螺杆、螺母和滚珠组成。它的功能是将旋转运动转化成直线运动,这是滚珠螺丝的进一步延伸和发展,这项发展的重要意义就是将轴承从滚动动作变成滑动动作。由于具有很小的摩擦阻力,滚珠丝杠被广泛应用于各种工业设备和精密仪器。滚珠丝杠是工具机和精密机械上最常使用的传动元件,其主要功能是将旋转运动转换成线性运动,或将扭矩转换成轴向反覆作用力,同时兼具高精度、可逆性和高效率的特点。 1)与滑动丝杠副相比驱动力矩为1/3 由于滚珠丝杠副的丝杠轴与丝母之间有很多滚珠在做滚动运动,所以能得到较高的运动效率。与过去的滑动丝杠副相比驱动力矩达到1/3以下,即达到同样运动结果所需的动力为使用滚动丝杠副的1/3。在省电方面很有帮助。 2)高精度的保证 滚珠丝杠副是用日本制造的世界最高水平的机械设备连贯生产出来的,特别是在研削、组装、检查各工序的工厂环境方面,对温度湿度进行了严格的控制,由于完善的品质管理体制使精度得以充分保证。 3)微进给可能 滚珠丝杠副由于是利用滚珠运动,所以启动力矩极小,不会出现滑动运动那样的爬行现象,能保证实现精确的微进给。 4)无侧隙、刚性高 滚珠丝杠副可以加予压,由于予压力可使轴向间隙达到负值,进而得到较高的刚性(滚珠丝杠内通过给滚珠加予压力,在实际用于机械装置等时,由于滚珠的斥力可使丝母部的刚性增强)。 5)高速进给可能 滚珠丝杠由于运动效率高、发热小、所以可实现高速进给(运动)。2.2.2纵向滚珠丝杠的设计与计算已知条件:工作台重量=80KG=800N 工件及夹具最大重量=200N 工作台最大行程=950mm工作台导轨的摩擦系数为u=0.1 快速进给速度=4m/min 定位精度为20um/300mm,全行程25um,重复定位精度为10um 要求寿命为10000小时(单班制工作十年)。各种切削方式的纵向切削力Fa,速度V和时间比例q及其他见下表表一各种切削方式的纵向切削力Fa,速度V和时间比例q切削方式纵向切削力Pxi(N)垂向切削力Pzi(N)进给速度Vi(m/min)工作时间百分比%丝杠轴向载荷(N)丝杠转速r/min强力切削200012000.610220060一般切削10005000.830115080精切削500200150620100快速进给001000375图二 进给用滚珠丝杠装配图1) 确定滚珠丝杠副的导程 :工作台最高移动速度:电机最高转速;I :传动比电机与丝杠间为齿轮连接式,i=4(取一级减速齿轮)由上表查得=4m/min,=1500r/min 代入得0.67mm查现代机床设计手册取5mm2) 确定当量转速与当量载荷(1) 各种切削方式下,丝杠转速由上表查的=0.6,=0.8,=1,=4代入得120,160,200,800(2) 各种切削方式下,丝杠轴向载荷:丝杠轴向载荷,:纵向切削力,:垂向切削力由上表得(i=1,2,3,4)分别为2000 N,1000N,500N,0N (i=1,2,3,4)分别为1200N,500N,200N,0N 已知800 N,200 N 代入得(i=1,2,3,4)分别为2200N,1150N,620N,1000N(3) 当量转速/100+/100+/100+/100数据代入得240r/min(4) 当量载荷带入数据得1057N3) 初选滚珠丝杠副由公式现代机床设计手册(3.724)知查现代机床设计手册表(3.751)表(3.754)得1,1,1,0.53,=1.3,10000h代入数据可求得13589N=13.58KN4)确定允许的最小螺纹底径(1)估算丝杠允许的最大轴向变形量(1/31/4)重复定位精度 (1/41/5 )定位精度:最大轴向变形量已知重复定位精度10定位精度253,6取两种结果最小值3(2)估算最小螺纹底径丝杠要求预拉伸,取两端固定的支承形式:最小螺纹底径mmL(1.11.2)行程+(1014) 静摩擦力=已知行程950mm,800N, =0.2代入数据得L=1110mm,160N, =9.5mm5)确定滚珠丝杠副得规格代号(5) 选内循环浮动式法兰,直筒螺母型垫片预紧形式(6) 由计算出的,在现代机床设计手册中选取相应规格的滚珠丝杠副FFZD4005-5 =5,=22000N=13589N6)确定滚珠丝杠副预紧力= 其中2200733N7)行程补偿值与拉伸力(1)行程补偿值C=11.8式中查现代机床设计手册950110,(24)15温差取代入数据得C=32(2)预拉伸力1.95 代入得4807N8)确定滚珠丝杠副支承用得轴承代号,规格(1)轴承所承受得最大轴向载荷480722007007(2)轴承类型两端固定的支承形式,选背对背60角接触推力球轴承(7) 轴承内径d略小于40,=,取d30带入数据得2336N(8) 轴承预紧力:预力负荷(9) 按现代机床设计手册选取轴承型号规格当d30mm,预加负荷为:所以送7602030TVP轴承d30,预加负荷为29002336N9)滚珠丝杠副工作图设计(1)丝杠螺纹长度由表查得余程(2)两固定支承距离,丝杠L(3)行程起点离固定支承距离1290,13501410,3010)传动系统刚度(1)丝杠抗压刚度1)丝杠最小抗压刚度6.6:丝杠底径:固定支承距离代入数据782N/2)丝杠最大抗压刚度 6 .6代入数据得9000 N/(2)支承轴承组合刚度1)一对预紧轴承的组合刚度:滚珠直径mm, Z:滚珠数:最大轴向工作载荷N :轴承接触角由现代机床设计手册查得7602030TVP轴承是预加载荷得3倍8700N/ =375 N/ 2)支承轴承组合刚度 750 N/3)滚珠丝杠副滚珠和滚道的接触刚度 :现代机床设计手册上的刚度2150 N/, =2200N, =733N代入数据得1491 N/11)刚度验算及精度选择=3.5,Z17, (1) 代入前面所算数据得 代入前面所算数据得已知800N, =0.2, =160N:静摩擦力,:静摩擦系数,:正压力(2)验算传动系统刚度;已知反向差值或重复定位精度为103025.6(3)传动系统刚度变化引起得定位误差(),代入5(4)确定精度:任意300mm内行程变动量对系统而言0.8定位精度定位精度为20/30014.3,丝杠精度取为3级12=15002.2.3横向滚珠丝杠的设计与计算已知条件: 工作台重量=80KG=800N 工件及夹具最大重量=200N 工作台最大行程=950mm工作台导轨的摩擦系数为u=0.1 快速进给速度=2m/min 定位精度为20um/300mm,全行程25um,重复定位精度为10um 要求寿命为10000小时(单班制工作十年)。各种切削方式的纵向切削力Fa,速度V和时间比例q及其他见下表表二切削方式的纵向切削力Fa,速度V和时间比例q切削方式纵向切削力Pxi(N)垂向切削力Pzi(N)进给速度Vi(m/min)工作时间百分比%丝杠轴向载荷(N)丝杠转速r/min强力切削200012000.610292060一般切削10005000.830185080精切削5002001501320100快速进给00280015001) 确定滚珠丝杠副的导程 :工作台最高移动速度;:电机最高转速I :传动比电机与丝杠间为齿轮连接式i=4(取一级减速齿轮)由上表查得=2m/min,=1500r/min 代入得0.33mm查现代机床设计手册取5mm2) 确定当量转速与当量载荷(1) 各种切削方式下,丝杠转速由上表查的=0.6,=0.8,=1,=2代入得120,160,200,400(2) 各种切削方式下,丝杠轴向载荷:丝杠轴向载荷,:纵向切削力,:垂向切削力由上表得(i=1,2,3,4)分别为2000 N,1000N,500N,0N (i=1,2,3,4)分别为1200N,500N,200N,0N 已知800 N,200 N 代入得(i=1,2,3,4)分别为2200N,1150N,620N,1000N(3) 当量转速/100+/100+/100+/100数据代入得200r/min(4) 当量载荷带入数据得1097N3) 初选滚珠丝杠副,由公式现代机床设计手册(3.724)知查现代机床设计手册表(3.751)表(3.754)得1,1,1,0.53,=1.3,10000h代入数据可求得13272N=13.27KN4)确定允许的最小螺纹底径(1)估算丝杠允许的最大轴向变形量(1/31/4)重复定位精度 (1/41/5 )定位精度:最大轴向变形量已知重复定位精度10,定位精度25,36取两种结果最小值3(2)估算最小螺纹底径丝杠要求预拉伸,取两端固定的支承形式:最小螺纹底径mmL(1.11.2)行程+(1014) 静摩擦力=已知行程950mm,800N, =0.2代入数据得L=1110mm,160N, =9.5mm5)确定滚珠丝杠副得规格代号(1) 选内循环浮动式法兰,直筒螺母型垫片预紧形式(2) 由计算出的,在现代机床设计手册中选取相应规格的滚珠丝杠副FFZD4005-5 =5,=22000N=13272N6)确定滚珠丝杠副预紧力= 其中2200733N7)行程补偿值与拉伸力(1)行程补偿值C=11.8,式中查现代机床设计手册950,110,(24)15温差取代入数据得C=32(2)预拉伸力1.95 代入得4807N8)确定滚珠丝杠副支承用得轴承代号,规格(1)轴承所承受得最大轴向载荷480722007007(2)轴承类型两端固定的支承形式,选背对背60角接触推力球轴承(3) 轴承内径d略小于40,=,取d30带入数据得2336N(4) 轴承预紧力:预力负荷(5) 按现代机床设计手册选取轴承型号规格当d30mm,预加负荷为:所以送7602030TVP轴承d30,预加负荷为29002336N9)滚珠丝杠副工作图设计(1)丝杠螺纹长度由表查得余程(2)两固定支承距离,丝杠L(3)行程起点离固定支承距离1290,1350,1410,3010)传动系统刚度(1)丝杠抗压刚度1)丝杠最小抗压刚度6 .6:丝杠底径:固定支承距离代入数据782N/2)丝杠最大抗压刚度 6 .6 代入数据得9000 N/(2)支承轴承组合刚度1)一对预紧轴承的组合刚度:滚珠直径mmZ:滚珠数, :最大轴向工作载荷N :轴承接触角由现代机床设计手册查得7602030TVP轴承是预加载荷得3倍8700N/ =375 N/ 2)支承轴承组合刚度 750 N/3)滚珠丝杠副滚珠和滚道的接触刚度 :现代机床设计手册上的刚度2150 N/, =2200N, =733N代入数据得1491 N/11)刚度验算及精度选择=3.5,Z17, (1) 代入前面所算数据得 代入前面所算数据得已知800N, =0.2, =160N:静摩擦力,:静摩擦系数,:正压力(2)验算传动系统刚度已知反向差值或重复定位精度为103025.6(3)传动系统刚度变化引起得定位误差(),代入5(4)确定精度:任意300mm内行程变动量对系统而言0.8定位精度;定位精度为20/30014.3,丝杠精度取为3级;12=15002.2.4滚珠丝杠的安装与使用(1)润滑为使滚珠丝杠副能充分发挥机能,在其工作状态下,必须润滑,润滑方式主要有以下两种1. 润滑脂润滑脂的给脂量一般是螺母内部空间容积的1/3,我厂滚珠丝杠副出厂时在螺母内部已加注GB7324-94 2#锂基润滑脂; 2. 润滑油润滑油的给油量标准如表16所示,但是随行程、润滑油的种类、使用条件(热抑制量)等的不同而有所变化。请注意使用。表16 润滑油的给油量标准(间隔3分钟)表三润滑油的给油量标准轴 颈 (mm)给油量 (cc)480.0310140.0515180.0720250.1028320.1536400.2545500.3055630.40701000.501001600.60(2)防尘滚珠丝杠副与滚动轴承一样,如果污物及异物进入就很快使它磨耗,成为破损的原因。因此,考虑有污物异物(切削碎削)进入时,必须采用防尘装置(折皱保护罩、丝杠护套等),将丝杠轴完全保护起来。 另外,如没有异物,但有浮尘时可在滚珠螺母两端增加防尘圈,请用户根据需要按编号规则选定合适规格型号。(3)使用滚珠丝杠副在使用时应注意以下事项:1. 滚珠螺母应在有效行程内运动,必要时要在行程两端配置限位,以避免螺母越程脱离丝杠轴而使滚珠脱落。2. 滚珠丝杠副由于传动效率高,不能自锁,在用于垂直方向传动时,如部件重量未加平衡,必须防止传动停止或电机失电后,因部件自重而产生的逆传动。防逆传动方法可用蜗轮蜗杆传动、液压式电器制动器及超越离合器等。 (4)安装 1)滚珠丝杠副在安装时应注意以下事项:1. 滚珠丝杠副仅用于承受轴向负荷。径向力、弯矩会使滚珠丝杠副产生附加表面接触应力等不良负荷,从而可能造成丝杠的永久性损坏。因此,滚珠丝杠副安装到机床时应注意: o 丝杠的轴线必须和与之配套导轨的轴线平行,机床的两端轴承座与螺母座必须三点成一线。 o 安装螺母时,尽量靠近支撑轴承; o 同样安装支撑轴承时,尽量靠近螺母安装部位。 2. 滚珠丝杠副安装到机床时,请不要把螺母从丝杠轴上卸下来。如必须卸下来时,要使用辅助套,否则装卸时滚珠有可能脱落。螺母装卸时应注意下列几点: o 辅助套外径应小于丝杠底径0.10.2mm. o 辅助套在使用中必须靠紧丝杠螺纹轴肩。 o 装卸时,不可使过大力以免螺母损坏。 o 装入安装孔时要避免撞击和偏心。2.3电机与滚珠丝杠连接用一级减速齿轮的设计与校核2.3.1齿轮传动齿轮传动在伺服进给系统中的作用是改变运动方向,降速、增大扭矩,适应不同丝杠螺距和不同脉冲当量的配比等。当在伺服电机和丝杠之间安装齿轮(直齿、斜齿、锥齿等)时,必然产生齿侧间隙,造成反向运动的死区,必须设法消除。下表是消除齿隙的方法:表三 消除齿隙的方法2.3.2纵向减速齿轮的设计与校核(以下公式参考自机械设计基础)已知:传递功率为1.8KW,电动机驱动,小齿轮转速1500r/min,传动比i4,载荷平稳。使用寿命10年(10000h)。(1)选择齿轮材料及精度等级 因传动功率较大,选用硬齿面齿轮组合。小齿轮用CrMnTi渗碳淬火,硬度为5662HRC;大齿轮用40CrHRC。选择齿轮精度等级为6级(金属切削机床)。(2)按齿面接触疲劳强度设计因两齿面均为钢质齿轮,可应用式(10.22)求出值。确定有关参数与系数:1)转矩 9.551.15N.mm2)载荷系数K 查表10.11取K=1.13)齿数和齿宽小齿轮的齿数取为20,则大齿轮为80。因单级齿轮传动为对称布置,而齿轮齿面又为软齿面由表10.20选取1。4)许用接触应力由图10.24查的 560Mpa,530 Mpa由表10.10查得1 601500110000 查表10.27得。由式(10.13)可得 故28mmm由表10.3取标准模数m1.5mm(3)主要尺寸计算 经圆整后取30mm 2m33mm(4)按齿根弯曲疲劳强度校核由式(10.13)得出如,则校核合格。确定有关系数与参数1)齿形系数查表10.13得2.81,2.182)应力修正系数查表10.14得1.56,1.803)许用弯曲应力由图10.25查得 440Mpa,410 Mpa。由表10.10查得 =1.3。由图10.26查的 。由式(10.14)可得 故 54.78Mpa=338 Mpa =37.2 Mpa=齿根弯曲强度校核合格。(5)验算齿轮得圆周速度v 由表10.22可知,选6级精度式合格的。2.3.3横向减速齿轮的设计与校核(以下公式参考自机械设计基础)已知:传递功率为1.8KW,电动机驱动,小齿轮转速1500r/min,传动比i4,载荷平稳。使用寿命10年(10000h)。(1)选择齿轮材料及精度等级 因传动功率较大,选用硬齿面齿轮组合。小齿轮用CrMnTi渗碳淬火,硬度为5662HRC;大齿轮用40CrHRC。选择齿轮精度等级为6级(金属切削机床)。(2)按齿面接触疲劳强度设计因两齿面均为钢质齿轮,可应用式(10.22)求出值。确定有关参数与系数:1)转矩 9.551.15N.mm2)载荷系数K 查表10.11取K=1.13)齿数和齿宽小齿轮的齿数取为20,则大齿轮为80。因单级齿轮传动为对称布置,而齿轮齿面又为软齿面由表10.20选取1。4)许用接触应力由图10.24查的 560Mpa,530 Mpa由表10.10查得1 601500110000 查表10.27得。由式(10.13)可得 故28mmm由表10.3取标准模数m1.5mm(3)主要尺寸计算 经圆整后取30mm 2m33mm(4)按齿根弯曲疲劳强度校核由式(10.13)得出如,则校核合格。确定有关系数与参数1)齿形系数查表10.13得2.81,2.182)应力修正系数查表10.14得1.56,1.803)许用弯曲应力由图10.25查得 440Mpa,410 Mpa。由表10.10查得 =1.3。由图10.26查的 。由式(10.14)可得 故 54.78Mpa=338 Mpa =37.2 Mpa3000002.533.5LD4-CK06256014000.60.0053000002.533.5LD4-CK61256014000.60.0053000002.533.5LD4-CK61329014001.20.0053000002.533.5LD4-CK61369014001.20.0053000002.533.5LD4-CK61409014001.20.0053000002.533.5LD4-CK61509014001.20.00530000033.54LD4-CK616318014001.80.00530000033.54LD4-CK65018014001.80.00530000033.54第3章 主轴脉冲发生器介绍与选型主轴脉冲发生器也叫光电编码器。其作用是当数控机床加工螺纹时,用主轴脉冲发生器作为车床主轴位置信号的反馈元件,它应与车床主轴同步转动,并发出主轴转角位置变化信号,输送给计算机。计算机按所需加工的螺距进行处理,控制机床纵向或横向步进电动机运转,实现加工螺纹的目的。其加工螺距为6、5、3.5、2.5、2、1.75、1.5、1.25、1、0.75、0.7、0.6、0.5、0.4、0.35、0.3、0.25共18种。3.1光电编码器原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90旱牧铰仿龀逍藕拧根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。(1)增量式编码器 增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90海佣煞奖愕嘏卸铣鲂较颍鳽相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。(2)绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。目前国内已有16位的绝对编码器产品。绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。编码的设计可采用二进制码、循环码、二进制补码等。它的特点是:可以直接读出角度坐标的绝对值;没有累积误差;电源切除后位置信息不会丢失。但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。(3)混合式绝对值编码器混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。光电编码器是一种角度(角速度)检测装置,它将输入给轴的角度量,利用光电转换原理转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中。3.2主轴脉冲发生器的安装主轴脉冲发生器的安装,通常采用二种方式:一是同轴安装,二是采用异轴安装。同轴安装的结构简单,联结方便。但缺点时安装后不能加工穿出车床主轴孔的零件。而异轴安装则没有这个缺陷。目前经济型数控系统改造卧式车床,多采用同轴安装。主轴脉冲发生器从传动联结方面分为刚性联结和柔性联结。所谓刚性联结就是指常用的轴套方式联结,这种联结对联结件的制造精度和暗转精度要求较高。应为同轴度的误差,会引起主轴脉冲发生器的偏转,造成信号不准甚至损坏内部光栅盘。另一种联结方式为柔性联结,即车床主轴与主轴脉冲发生器之间用弹性元件联结,常用的元件为波纹管橡胶管。联结方式如附图所示。这是较为适用的联结方式。需引起注意的是,主轴脉冲发生器属精密光学元件,安装时应格外小心,以免损坏光栅盘。另外,在使用中还应注意最高许用转速,使用时车床主轴不能超过此转速。最好能做到使用时可将其装上,不使用时将其脱开,以延长其实用寿命。3.3主轴脉冲发生器的选择选用ZSP708系列,采用刚性联结。下图为主轴脉冲发生器的型号代号说明:其特点为:经济型数控用。安装方便,互换性好,抗干扰强。采用模块化设计,耐高温、可靠性高。外径70,止口52,轴径8,D形切口。 航空插头输出图五 主轴脉冲发生器的型号代号说明表六 主轴脉冲发生器接线表、技术参数接线表 (航空插头:XS16-7)插座号1234567导线颜色红黑绿棕白铜网-信 号+5VSIG ZSIG A0VSIG B屏蔽线-注: 电缆侧出:信号按表中所示的导线颜色连接,输出电缆标准长度为1m,最长可达100m。 电缆屏蔽线应接编码器插座的6脚,6脚已接编码器外壳,另一端屏蔽线应悬空。 根据用户需要,可选配其他航空插头,如CX22-10或YZM-10等。 实际接线以编码器标牌为准。技术参数电源电压VCCDC+5V5%或+4.513.2V、+10.826.4V最大机械转数 5000rpm输出电压 高电平85%Vcc,低电平0.3V抗震动 50m/s2,10200HZ,XYZ方向各2h消耗电流 180mA抗冲击 980m/s2,6ms,XYZ方向各2次响应频率 0100KHZ (或按用户要求)防 护 防水、防油、防尘 IP54输出波形 方波工作寿命 MTBF50000h (+25,2000rpm)载空比 0.5 T 0.1 T工作温度 -25100启动力矩 610-3Nm(+25)储存温度 -40110转动惯量 7.510-6kgm2工作湿度 3085% (无结霜)轴最大负载 径向: 35N,轴向: 25N重 量 约0.32Kg安装尺寸(单位:mm)第4章 普通车床自动化改造的单片机控制4.1系统设计数控机床微机系统有两种基本形式,即经济型和全功能型。所谓经济型系统是用一个计算机系统作主控单元,伺服系统大都为功率步进电动机,采用开环控制系统,步进脉冲当量为0.01-0.005mm/脉冲,机床快速移动速度为2m/min8m/min,传动精度较低,功能也比较简单。全功能型的系统用24个计算机系统进行控制,各个cpu之间采用标准总线接口,或者采用中断方式通讯。在主控计算机的管理下,各计算机之间分别进行指令识别、插补运算、文本及图形显示、控制信号的输入输出符等。伺服系统一般采用交流或直流电动机伺服驱动的闭环或半闭环控制,这种形式可方便地控制进给速度和主轴转速。机床最快移动速度为824m/min,步进脉冲当量为0.01-0.001mm/脉冲,控制的轴数多达2024个,因而广泛用于精密数控车床、铣床、加工中心等精度要求高、加工工序复杂的场合。 早期的经济型数控系统多采用功能简单的Z80 单板机控制。近年来,多采用单片机为核心,做成专用的数控系统,下图所示为本篇论文所设计的单片机所控制的普通车床(C6150改造后)的硬件框图,实用于普通车床的数控系统。图六 单片机所控制的普通车床(C6150改造后)的硬件框图本图中键盘用于手工输入零件的加工程序,显示器用于显示输入的指令和加工状态,8031对加工程序进行指令识别运算处理后,向锁存器输入进给脉冲,经X、Y驱动模块伺服放大后,驱动X轴、Z轴步进电动机,产生进给运动:8255的PB口输出控制信号M.S.T。其中M为辅助功能,主要示主电动机,冷却电动机的启/停控制信号:S为主轴调速控制信号:T为转刀架的转位换刀的转位换刀控制信号。本控制是选用8031单片机。8031单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线。下图为8031的引脚图:MCS-51系列单片机中的8031、8051及8751均采用40Pin封装的双列直接DIP结构,下图是它们的引脚配置,40个引脚中,正电源和地线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O口,中断口线与P3口线复用。图七 8031引脚配置其内部结构的的功能如下:中央处理器:中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作;数据存储器(RAM):8051内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。 程序存储器(ROM): 8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。 定时/计数器(ROM): 8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。 并行输入输出(I/O)口: 8051共有4组8位I/O口(P0、P1、P2或P3),用于对外部数据的传输。 中断系统: 8051具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。 时钟电路: 8051内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8051单片机需外置振荡电容。4.2用单片机控制系统电路 4.2.1存储器扩张电路存储器扩张电路如下图所示,EPROM用于存储控制程序,RAM用于存储加工程序。位了保证RAM在掉电时加工数据不丢失,电路中还设计了掉电保护电路。图八 存储器扩张电路下面简单介绍一下所用到的芯片的原理与框图27128EPROM芯片27128有8根数据线D0-D7,81928(8388600)个存储单元,需要13根地址线(A0-A12)。27128可执行读出和写出两操作。本设计中,两种操作都有用到,其扩张单片机的内存容量,这相当与写入;在工作中,加工零件时需从中读出数据进行加工。在27128中,最重要的时OE、CE两条信号线。CE即为使用地址线划定27128的存储单元所在存储空间的区域。此时CE有效。当CE0时,可从存储器读出数据,这可用CPU的MREQ和RD信号控制。下图为27128的引脚图。图九 芯片27128的引脚图 6264RAM芯片6264为静态RAM,下图(一)为其管脚图。其是一种CMOS工艺制作的芯片,由单一5V供电,额定功耗为200uW,典型存取时间为200ns,28线双列直插式扁平封装,地址线增加了两根,为A0-A12,由两个片选端CE1,CE2。图二为其操作方式。图十 6264管脚图表七 芯片6264操作方式管脚操作方式CE1CE2OEWED0-D7未选中(掉电)1任意任意任意高阻未选中(掉电)任意0任意任意高阻输出禁止0111高阻读出0101DOT1写入0110DIN写入0100DIN74LS373锁存器74LS138为八D锁存器(3S,锁存允许输入有回环特性)。373 的输出端O0O7 可直接与总线相连。当三态允许控制端OE 为低电平时,O0O7 为正常逻辑状态,可用来驱动负载或总线。当OE 为高电平时,O0O7 呈高阻态,即不驱动总线,也不为总线的负载,但锁存器内部的逻辑操作不受影响。当锁存允许端LE 为高电平时,O 随数据D 而变。当LE 为低电平时,O 被锁存在已建立的数据电平。当LE 端施密特触发器的输入滞后作用,使交流和直流噪声抗扰度被改善400mV 。引出端符号:D0D7 数据输入端OE 三态允许控制端(低电平有效)LE 锁存允许端O0O7 输出端图十一 锁存器74LS138外部管腿掉电保护电路为了在外部电源断电的情况下,存储在静态RAM6264中的零件加工程序不至于丢失,所以需要外加掉电保护电路。下面就是一个标准的掉电保护电路。(VCC = 6V)。图十二 掉电保护电路4.2.2面板操作键和功能选择开关面板操作键和功能选择开关面板操作键于8031的P1口接口电路如下图所示。图中为手动操作进给键,分别完成人工操作的的进给。运行时按下此键,可中断程序的运行。是一个两位开关,用于单段连续控制,置于“单段”位置时,每运行一个程序段就暂停,只有按下启动键,才继续运行下一个程序段。单段工作方式一般用于检查输入的加工程序。置于“连续”位置时,程序将连续执行。图十三 面板操作键和功能选择开关接线图4.2.3功能选择开关功能选择开关为一个单刀8掷波段开关,它与系统的8255的PA口相连,如下图所示,用于编辑、空运行、自动、回零、手动、通信等功能的选择。编辑方式 用于加工程序的输入、检索、修改、插入和删除等操作空运行方式 启动加工程序后,只执行加工指令,对M.S.T指令则跳过不执行,而且刀具以设定的速度运行。这种方式主要用于检查加工程序,而不用于加工。自动方式 只有在这个方式下,才可以按启动键实行加工。在编辑状态下输入程序并检查无误后,将置自动方式,再按下启动键,认定当前刀具为起点位置,开始执行加工程序。手动方式 用于加工前对刀调整或进行简单加工。该方式有、共三种选择,分别对应与不同的进给速度。回零方式 使刀架沿X轴、Y轴回到机械零点。通信方式 该方式中包括系统与盒式磁带机、打印机及上位机的数据通讯、转存等操作。图十四 功能选择开关接线图4.2.4键盘、显示器接口电路 键盘、显示器是数控系统常用的人机交互的外围设备,可以完成数据的输入和计算机状态数据的动态显示。采用行列式键盘,即用I/O接口线组成行、列结构,按键设置在行列的交点上。采用8155接口芯片管理的键盘、显示电路,由58键和7位LED显示器组成,为了简化电路,键盘的列线及LED显示器的字位控制共用一个接口,即8155芯片的A接口。键盘的行线由芯片接口控制,显示器的字型数据由芯片的B接口控制。键盘接口电路主要是用8155扩展I/O口组成的行列式键盘。8155各引脚功能说明如下:RST:复位信号输入端,高电平有效。复位后,3个I/O口均为输入方式。AD0AD7:三态的地址/数据总线。与单片机的低8位地址/数据总线(P0口)相连。单片机与8155之间的地址、数据、命令与状态信息都是通过这个总线口传送的。:读选通信号,控制对8155的读操作,低电平有效。:写选通信号,控制对8155的写操作,低电平有效。:片选信号线,低电平有效。IO/:8155的RAM存储器或I/O口选择线。当IO/0时,则选择8155的片内RAM,AD0AD7上地址为8155中RAM单元的地址(00HFFH);当IO/1时,选择 8155的I/O口,AD0AD7上的地址为8155 I/O口的地址。ALE:地址锁存信号。8155内部设有地址锁存器,在ALE的下降沿将单片机P0口输出的低8位地址信息及,IO/的状态都锁存到8155内部锁存器。因此,P0口输出的低8位地址信号不需外接锁存器。PA0PA7:8位通用I/O口,其输入、输出的流向可由程序控制。PB0PB7:8位通用I/O口,功能同A口。PC0PC5:有两个作用,既可作为通用的I/O口,也可作为PA口和PB口的控制信号线,这些可通过程序控制。TIMER IN:定时/计数器脉冲输入端。TIMER OUT:定时/计数器输出端。VCC:5V电源下图为8155扩展I/O口组成的行列式键盘接口电路。图十五 8155扩展I/O口组成的行列式键盘接口电路4.2.5步进电动机驱动电路设计步进电机驱动电路的主要功能是功率放大,它将光电隔离电路送来的弱信号经功率放大,变成较强的电信号,直接驱动步进电机,如图2所示。当控制脉冲来时,V1,V3,V4全导通,并使脉冲变压器Tc的副边产生一定宽度的脉冲电流,使V2导通,使V5处于反向偏置,将低压Ga与绕组La切断,高压电源Gh通过V2、V1为步进电机某一相绕组La供电,使其电流上升沿变陡。经过tb时间后脉冲电流消失,使V2截止,Gh与绕组之间被切断。Ga通过V5、V1为La供电,提供电动机所需的额定电流。通过调整脉冲变压器的磁芯和R5可改变高压供电的时间宽度tb。步进电动机的的工作过程一般由控制器控制,控制器按照设计者的要求完成一定的控制过程,使功率放大器按照要求的规律驱动步进电动机运行。简单的控制过程可以用各种逻辑电路来实现,其缺点使线路复杂、控制方案改变困难,自从微处理器问世以来,给步进电动机控制器设计开辟了新的途径。各种单片机微型计算机的迅速发展和普及,为设计者能很强而价格低廉的步进电动机控制器提供了条件。本论文步进电动机采用光电耦合电路再经过功率放大后控制步进电动机。(1)光电耦合电路为了防止强电干挠及其它干挠信号通过I/O口控制电路进入计算机,影响其工作,通常的办法使首先采用滤波吸收,抑制干挠信号的产生,然后采用光电耦合的办法,使微机与强电部件不共地,阻断干挠信号的传导。光电图十六 步进电动机驱动电路隔离电路主要由光电耦合器的光电转换元件组成,如下图所示。图十七 光电耦合电路采用光电耦合器可以将微机与前向、后向通道及其它相关部分切断与电路的联系,从而有效地防止干扰信号进入微机在微机应用系统中,由于端口的性质不同,接口电路也有所不同。当与微机连接的接口复位时时,其接口倍被强迫置成高电平,使PNP晶体管截止,光电耦合器中无电流通过,输出为高电平。当软件使接口置为低电平时,则输出为低电平。采用这种电路可使开机复位时不因接口强迫置成高电平而输出不需要的信号。 (2)功率放大电路如下图所示即为功率放大接线图,图中A、B、C、D分别为步进电动机的四相,每相由一组放大器驱动。放大器输入端与环形分配器相连。在没有脉冲输入时,3D4K和3DD15功率放大器均截止。绕组中无电流通过。电动机不转。当A相得电,电动机转动一步。当脉冲依次加到A、B、C、D四个输入端时,四组放大器分别驱动不同得绕组,使电动机一步一步地转动。电路中与绕组并联的二极管VD分别起到续流作用,即在功放管截止时,使储存在绕组中的能量通过二极管形成续流回放泄放,从而保护功放管。与绕组W串连的电阻R为限流电阻,限制通过绕组的电流不致超过其额定值,以免步进电动机发热厉害被烧坏。R的阻值一般在520范围内选取。该电路结构简单,但R串在大电流回路中要消耗能量,使放大器功率降低。同时由于绕组电感L较大,电路对脉冲电流的反应较慢,因此,输出脉冲波形差、输出功率低。这种放大器主要用于对速度要求不高的小型步进电动机中。图十八 功率放大电路4.2.6 M.S.T接口M.S.T信号有两个特点,一是信号功率较大,微机输出的信号要进行放大后才能使用:二是信号控制的都是220V或380V强电开关器件,因此必须采用严格的电气隔离措施,如下图所示,由8255PB口输出控制信号,先经过一次光电隔离,经译码放大后。由中间继电器KA再次隔离,因此该接口电路具有较强的抗干扰能力。8255PB口定义为基本输出方式,从PB0-PB4输出的5个信号经光电耦合后,送至38译码器,其中PB0-PB2为译码地址信号,PB3、PB4为译码器片选信号。S01-SO4为与调整电动机相连的4种主轴调整信号,T10-T40为4种换刀信号。M03-M26为8个辅助功能信号,其中M03用于启动主轴正传,M04用于控制主轴反转,M05使主轴停止。M22-M26是用户自用信号,可用于控制冷却电动机的启/停、液压电动机的启/停、第三坐标的启/停或电磁铁动作等。各M.S.T的译码逻辑联系如下表所示。表八 M.S.T信号地址对照表 8255PB口输出信号8255PB口输出信号PB4PB3PB2PB1PB0PB4PB3PB2PB1PB00000000011111111000011110011001101010101SO1SO2SO3SO4T10T20T30T401111111100000000000011110011001101010101M03M04M05M22M23M24M25M264.2.7辅助电路设计8031芯片的时钟采用内部方式时钟电路, 如图2所示。晶体振动频率确定为6MHZ,电容在530PF之间选择,时钟的微词由电容C1、C2 控制。单片机的复位靠外部电路实现, 本设计使用上电复位和按钮复位的组合如下图所示。设置了急婷键, 机床在工作中遇到意外情况时在不关闭电源的情况下, 急停机床使其恢复到原始状态。由8031单片机的外部中断INTo控制,一旦急停键闭合, 便能产生中断信号,达到停止机床的目的。如下图所示。第5章 小结通过几个月的努力,本课题的学习终于到了最后。做毕业设计的过程学到了很多课本上没有学到的知识,也通过本论文的准备,查资料把大学四年的知识整理了一番。以前好多遗忘的知识又回到了大脑。本篇论文是关于普通机床的自动化改造,通过这次学习在机床改造中获的了意想不到的快乐与成就感。会为以后的工作积累下丰富的经验。但是本篇论文还有不禁如意的地方:1)所研究的东西只是停留在理论方面,很多东西现在还不是很明白2)在零件的设计计算过程中,还有些是不明白之处,设计的依据和其中的很多术语3)对C6150车床的改造还不是很彻底,只是对其中的一些主要部件进行了改造,如时间在宽裕一些,我想我可以做的更好。但本次毕业论文,在指导教师钱济国副教授的精心指导下,掌握了设备自动化改造的主要技术关键环节,对数控设备、数控技术有了更进一步的了解和掌握,了解了数控设备、数控技术的发展趋势,指明了以后的发展方向,必将为以后的学习和工作起到很大的作用。参考文献1李洪 实用机床设计手册 北京: 机械工业出版社 19972杜君文 邓广敏 数控技术 天津:天津大学出版社 2002年3成大先 机械设计图册 北京:化学工业出版社 20034王炳实 机床电气控制 北京:机械工业出版社 20055李福生 实用数控机床技术手册 北京:北京出版社 19936上海纺织工学院等 机床设计图册 上海:上海科学技术出版社 19797余英良 机床数控改造设计与实例 北京:机械工业出版社 19978陈绍廉 数控机床改造技术 北京:航空工业出版社 19889 于淘 C6132普通机床的数控改造 . 北华大学学报10谷风金 C6140车床的数控改造与设计 . 煤矿机械11赵美林 CA6140车床的改造 . 机床与液压12陈继振 CA6140车床数控改造的安装及调试 . 设备与维护13白文庆 普通车床的数控改造 . 机械产品与科技14张丽芳 普通车床的数控改造设计 . 船电技术15贾传圣 普通机床的数控改造与应用 . 改装与维修16李朝阳 单片机原理及接口技术 北京:北京航天航空大学 200517林平勇 高嵩 电工电子技术 北京:高等教育出版社200018张建明 机电一体化系统设计 北京:高等教育出版社200119张树森 机械制造工程学 沈阳:东北大学出版社 200520顾维邦 金属切削机床概论 北京:机械工业出版社200521周开勤 唐蓉城等 机械设计师实用手册 天津:天津科学技术出版199222唐仲文 实用数控机床技术手册 北京:北京出版社 199323大连组合机床研究所 组合机床设计 北京:机械工业出版社 197524牛大年 机械原理 北京:高等教育出版社199425胡汉才 单片机原理及其接口技术 北京:清华大学出版社 199526吴道全 金属切削原理及刀具 重庆:重庆大学出版社 200327L.Meivovitch,“Elements of Vibration analysis”,MCGRAWHILL,199528INTERNATIONAL STANDARD ISO02861 ISO02862 198829Yoram Koren,Computer Control of Manufacturing System,McGram Hill Book Co.1983英文原文CUTTING TOOLS When selecting cutting tools for a job, the first thing to consider is what type of operation needs to be performed. Here is a quick description of the basic cutting tools most often used in milling operations. DRILL A drill is used to create a round, cylindrical hole in a workpiece. Drilled holes can be through holes or blind holes. A blind hole is not cut entirely through a workpiece. Quite often, an engineering blueprint will specify a drilled hole to be drilled to full diameter depth. This means that the hole diameter must be a specified depth without regard to the angled tip of the drill. When you measure your tool length offset, you are measuring the length of the drill and its tip. So how deep do you drill the hole so that the full diameter depth is correct? Well, you need to know how long the drill point is. TIP: The length of the drill point is determined by the tool point angle and the drill diameter. You can calculate the length of the drill point by multiplying the drill diameter by a constant; the value of the constant depends on the drill point angle (most standard high-speed steel drills have a tool point angle of 118 degrees). For a drill point angle of: 118 degrees 135 degrees 141 degrees Multiply the drill diameter by: 0.3 0.207 0.177 Using these constants allows you to calculate the drill point length within a few thousandths of an inch. CENTER DRILLA center drill is a small drill with a pilot point. It is used to create a small hole with tapered walls. When a holes location must be held to a close tolerance, use a center drill first and then use a twist drill to finish the hole. The tapered walls of the center-drilled hole will keep the twist drill straight when it begins to drill into the workpiece. TIP: Many machinists use this rule of thumb: If the tolerance of the diameter of a center-drilled hole is not critical, drill as deep as you want this diameter to be. With a standard, 60-degree center drill below 0.375-inch diameter, the hole diameter produced will be close to the depth you drilled. With larger center drills 0.375 inch and above the depth-to-diameter ratio becomes larger, so you could be off by as much as 0.080 to 0.100 inch. REAMER A reamer is designed to remove a small amount of material from a drilled hole. The reamer can hold very close tolerance on the diameter of a hole, and give a superior surface finish. The hole must be drilled first, leaving 0.005 to 0.015 inch of stock on the walls of the hole for the reamer to remove. TIP: The ideal situation for hole size accuracy and location when reaming is to process the hole with the following steps: the hole is first drilled, then bored, then reamed. TIP: Stock allowance for a reamed hole will depend on the size of the hole. A general rule is: for holes less than 1/2for holes greater than 1/2stock of less than 0.0150 on diameterstock of 0.030 on diameter The type of workpiece material and the method used to create the hole will affect the stock allowance. TIP: A reamer produces the best, most uniform surface finish when it is fed into and out of the hole using the G85 (bore in, bore out) canned cycle. Many people try to save time by using the G81 (drill) canned cycle, which will feed into a hole and rapid out. It is quicker than G85, but will usually leave a helical swirl mark on the cylindrical surface of the hole. Although this swirl mark is only a cosmetic flaw and doesnt affect the size of the hole, the appearance of the hole may be rejected by some customers. TAP A tap is used to create screw threads inside of a drilled hole. NOTE: Great care must be taken when using a milling machine to perform a tapping operation. TIP: If you are using a machine with rigid tapping, feedrate (in inches per minute) = thread pitch x revolutions per minute. Also, you should never tap more than 1.5 x the taps major diameter. Threaded connections will not increase in strength if the contact length is more than 1.5 times the diameter of the fastener. If you need threads that are deeper, machine tap them first and hand-tap them to finished depth. If you tap deeper than 1.5 x the hole diameter, your chances of breaking the tap increase dramatically. Chip control becomes a problem. When tapping blind holes, always drill as deep as possible to avoid packing chips below the tap. Using a spiral flute tap will bring the chips up, out of the hole. To further reduce tapping headaches, make sure all holes to be tapped are free of chips, and use a tapping fluid specifically designed for the type of material you are cutting. TIP: Tap drill size is the size of the hole required for a specific tap. For 75% effective threads the formula that will determine the correct drill size is: D 1/N, whereD = major diameter of the tap and N = number of threads per inch A tapped hole with 75% of thread depth has only 5% less strength than 100% thread and takes only 1/3 of the cutting force of a 100% thread. END MILL An end mill is shaped similar to a drill, but with a flat bottom. It is used primarily to cut with the side of the tool to contour the shape of a workpiece. TIP: Programming an end mill to cut contour or pocket tool paths using cutter compensation (G41 and G42) allows you much more flexibility in adjusting the size of machined features. Using cutter compensation allows you to adjust the amount of stock removal. As an end mill wears, minor offset adjustments allow you to make every part the same size. You may also use a different size end and have the machine cut the same part features as with the end mill originally programmed for that tool path. BULL END MILLA bull end mill is the same as a regular end mill except that there is a radius on the corner where the flutes meet the bottom of the end mill. This radius can be any size up to one-half of the tools diameter. TIP: Bull end mills are effective for producing a corner radius between a wall and a floor on a given part feature. They also add to the strength of an end mill. When machining hard, tough to cut materials, the sharp corners on a standard end mill tend to chip and wear faster than an end mill with a corner radius. The radius on a bull end mill provides a more gradual shearing entry in to the work piece. BALL END MILLA ball end mill is a bull end mill where the corner radius is exactly 1/2 the tools diameter. This gives the tool a spherical shape at the tip. It can be used to cut with side of the tool like an end mill. TIP: The primary purpose of a ball end mill is to machine lofted surfaces. The spherical shape of the tool is able to move along any undulating surface and cut anywhere along the cutters ball end. As a ball can roll over a surface, a ball end mill can be used to cut any such surface. INSERT END MILLAn insert end mill is the same as a standard end mill but with replaceable carbide inserts. TIP: Insert end mills are designed to remove metal at higher rates than solid carbide. They come in a large range of diameters and are able to cut at a deeper depth of cut. This is fantastic but, when using these cutters, it is a good idea to calculate the horsepower required to make a cut. Piece of cake on your Haas control: There is a button on the front labeled HELP/CALC. Press this button once to get the Help menu, press it again to get the Calculator functions. Use the PAGE UP/PAGE DOWN keys to scroll between three pages: Trigonometry Help, Circular Interpolation Help, and Milling Help. Each one of these pages has a simple calculator in the upper left hand corner. On the Milling Help page, you can solve three equations:1. SFM = (cutter diameter in.) * RPM * 3.14159 / 12 2. (Chip load in.) = (feed in. per min.) / RPM / # of flutes 3. (Feed in. per min.) = RPM / (thread pitch) With all three equations, you may enter all but one of the values and the control will compute and display the remaining value. To calculate the horsepower required for a cut, you must enter values for RPM, feed rate, number of flutes, depth of cut, width of cut, and choose a material from the menu. If you change any of the above values, the calculator will automatically update the required horsepower for the cut you intend. The next thing to consider when choosing cutting tools for a job is what material you are going to cut. The most common materials cut in the metalworking industry can be divided into two categories: non-ferrous and ferrous. Non-ferrous materials include aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys. Common ferrous materials include carbon steel, alloy steel, stainless steel, tool steel, and ferrous cast metals like iron. Non-ferrous metals are softer and easier to cut, with the exception of nickel and titanium. Ferrous metals, on the other hand, are generally harder in composition and tougher to cut. Cutting tool material is one of the biggest decisions youll have to make when choosing a cutting tool. Most all of the cutters described above are available in three basic materials: high-speed steel, solid carbide, and carbide insert style. Almost all of the basic cutting tool materials can be used to cut almost all materials. It really boils down to performance. High-speed steel cutting tools have very high toughness but lack wear resistance. Carbide, on the other hand, has a very high wear resistance but chips and breaks easily. Carbide will always be able to cut materials at higher speeds and feeds, but is more expensive. Carbide insert cutting tools are very useful in high-production situations because the inserts are designed with multiple cutting edges on each insert. When they become worn out, you index the inserts to the next cutting edge, and when all cutting edges are used, you only replace the inserts and not the whole tool. TIP: If you are using a high-speed steel drill, always use a center drill to get the hole started. Then drill the hole. This will ensure that the drilled hole is in the correct location. If you are using a carbide drill, it is not necessary to center drill first because carbide drills are ground with a self-centering tip. Using a carbide drill to drill a hole that is already center drilled will damage the drill. The outer cutting edges will contact the tapered walls before the tip of the drill begins to cut. This will shock the outer cutting edges and cause the drill to chip. Carbide drills must begin to cut at the tip before the outer cutting edges. Each one of these cutting tool materials is available with a variety of different coatings to enhance their performance. The three coatings most widely use today are titanium nitride (TiN), titanium carbonitride (TiCN), and titanium aluminum nitride (TiAlN). TiN coating is easily recognized by its gold color. The advantages of TiN coating are increased surface hardness, increased tool life, better wear resistance and higher lubricity, which decreases friction and reduces edge build-up. TiN coating is mostly recommended for machining low alloy steel and stainless steel. TiCN coating is gray colored compared to TiN, and even harder. Its advantages are increased cutting speed and feeds (40% to 60% higher compared to TiN), higher metal removal rates, and superior wear resistance. TiCN coatings are recommended for machining all material types. TiAlN coating appears gra
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。