不等式的证实1_第1页
不等式的证实1_第2页
不等式的证实1_第3页
不等式的证实1_第4页
不等式的证实1_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 12 不等式的证实 1 不等式的证实 1 教学目标 (1)理解证实不等式的三种方法 :比较法、综合法和分析法的意义 ; (2)把握用比较法、综合法和分析法来证简单的不等式 ; (3)能灵活根据题目选择适当地证实方法来证不等式 ; (4)能用不等式证实的方法解决一些实际问题 ,培养学生分析问题、解决问题的能力 ; (6)通过不等式证实 ,培养学生逻辑推理论证的能力和抽象思维能力 ; (7)通过组织学生对不等式证实方法的意义和应用的参与 ,培养学生勤于思考、善于思考的良好学习习惯 . 教学建议 (一 )教材分析 1.知识结 构 2.重点、难点分析 重点 :不等式证实的主要方法的意义和应用 ; 难点 : 理解分析法与综合法在推理方向上是相反的 ; 综合性问题选择适当的证实方法 . (1)不等式证实的意义 不等式的证实是要证实对于满足条件的所有数都成立 (或都不成立 ),而并非是带入具体的数值去验证式子是否成立 . 2 / 12 (2)比较法证实不等式的分析 在证实不等式的各种方法中 ,比较法是最基本、最重要的方法 . 证实不等式的比较法 ,有求差比较法和求商比较法两种途径 . 由于 ,因此 ,证实 ,可转化为证实与之等价的 .这种证法就是求差比较法 . 由于当时 ,因此 ,证实可以转化为证实与之等价的 .这种证法就是求商比较法 ,使用求商比较法证实不等式时 ,一定要注重的前提条件 . 求差比较法的基本步骤是 :“ 作差 变形 断号 ”. 其中 ,作差是依据 ,变形是手段 ,判定符号才是目的 . 变形的目的全在于判定差的符号 ,而不必考虑差值是多少 . 变形的方法一般有配方法、通分的方法和因式分解的方法等 ,为此 ,有时把差变形为一个常数 ,或者变形为一个常数与一个或几个数的平方和的形式 .或者变形为一个分式 ,或者变形为几个因式的积的形式等 .总之 .能够判定出差的符号是正或负 即可 . 作商比较法的基本步骤是 :“ 作商 变形 判定商式与 1的大小关系 ”, 需要注重的是 ,作商比较法一般用于不等号两侧的式子同号的不等式的证实 . (3)综合法证实不等式的分析 3 / 12 利用某些已经证实过的不等式和不等式的性质推倒出所要证实的不等式成立 ,这种证实方法通常叫做综合法 . 综合法的思路是 “ 由因导果 ”: 从已知的不等式出发 ,通过一系列的推出变换 ,推倒出求证的不等式 . 综合法证实不等式的逻辑关系是 : . (已知 )(逐步推演不等式成立的必要条件 )(结论 ) 利用综合法由因导果证实不等式 ,就 要揭示出条件与结论之间的因果关系 ,为此要着力分析已知与求证之间的差异和联系、不等式左右两端的差异和联系 ,在分析所证不等式左右两端的差异后 ,合理应用已知条件 ,进行有效的变换是证实不等式的关键 . (4)分析法证实不等式的分析 从求证的不等式出发 ,逐步寻求使不等式成立的充分条件 ,直至所需条件被确认成立 ,就断定求证的不等式成立 ,这种证实方法就是分析法 . 有时 ,我们也可以首先假定所要证实的不等式成立 ,逐步推出一个已知成立的不等式 ,只要这个推出过程中的每一步都是可以逆推的 ,那么就可以断定所给的不等式成立 .这也是用分析法 ,注重应强调 “ 以上每一步都可逆 ”, 并说出可逆的根据 . 分析法的思路是 “ 执果导因 ”: 从求证的不等式出发 ,探4 / 12 索使结论成立的充分条件直至已成立的不等式 .它与综合法是对立统一的两种方法 . 用分析法证实不等式的逻辑关系是 : . (已知 )(逐步推演不等式成立的必要条件 )(结论 ) 分析法是教学中的一个难点 ,一是难在初学时不易理解它的本质是从结论分析出使结论成立的 “ 充分 ” 条件 ,二是不易正确使用连接有关 (分析推理 )步骤的关键词 .如 “ 为了证实 ”“ 只需证实 ”“ 即 ” 以及 “ 假定 成立 ” 等 . 分析法是证 实不等式时一种常用的基本方法 .当证实不知从何入手时 ,有时可以运用分析法而获得解决 .非凡对于条件简单而结论复杂的题目往往更是行之有效 . (5)关于分析法与综合法 分析法与综合法是思维方向相反的两种思考方法 . 在数学解题中 ,分析法是从数学题的待证结论或需求问题出发 ,一步一步地探索下去 ,最后达到题设的已知条件 .即推理方向是 :结论已知 . 综合法则是从数学题的已知条件出发 ,经过逐步的逻辑推理 ,最后达到待证结论或需求问题 .即 :已知结论 . 分析法的特点是 :从 “ 结论 ” 探求 “ 需知 ”, 逐步靠拢“ 已知 ”, 其逐步推 理实际上是要寻找结论的充分条件 . 综合法的特点是 :从 “ 已知 ” 推出 “ 可知 ”, 逐步推向 “ 未5 / 12 知 ”, 其逐步推理实际上是要寻找已知的必要条件 . 各有其优缺点 : 从寻求解题思路来看 :分析法是执果索因 ,利于思考 ,方向明确 ,思路自然 ,有希望成功 ;综合法由因导果 ,往往枝节横生 ,不轻易达到所要证实的结论 . 从书写表达过程而论 :分析法叙述繁锁 ,文辞冗长 ;综合法形式简洁 ,条理清楚 . 也就是说 ,分析法利于思考 ,综合法宜于表达 . 一般来说 ,对于较复杂的不等式 ,直接运用综合法往往不易入手 ,用分析法来书写又比较麻烦 .因此 ,通常用分析法探索证题途径 ,然后用综合法加以证实 ,所以分析法和综合法经常是结合在一起使用的 . (二 )教法建议 选择例题和习题要注重层次性 . 不等式证实的三种方法主要是通过例题来说明的 .教师在教学中要注重例题安排要由易到难 ,由简单到综合 ,层层深入 ,启发学生理解各种证法的意义和逻辑关系 .教师选择的练习题也要与所讲解的例题的难易程度的层次相当 . 要坚持精讲精练的原则 .通过一题多法和多变挖掘各种方法的内在联系 ,对知识进行拓展、延伸 ,使学生沟通知识 ,有效地提高解题能力 . 在教学过程中 ,应通过精心设置的一个 个问题 ,激发学生6 / 12 的求知欲 ,调动学生在课堂活动中积极参与 . 通过学生参与教学活动 ,理解不等式证实方法的实质和几种证实方法的意义 ,通过练习积累经验 ,能够总结出比较法的实质是把实数的大小顺序通过实数运算变成一个数与 0(或1)比较大小 ;复杂的习题能够利用综合法发展条件向结论方向转化 ,利用分析法能够把结论向条件靠拢 ,最终达到结合点 ,从而解决问题 . 学生素质较好的 ,教师可在教学中适当增加反证法和用函数单调性来证实不等式的内容 ,但内容不易过多过难 . 第一课时 教学目标 1.把握证实不等式的方法 比较法 ; 2.熟悉并把握比较法证实不等式的意义及基本步骤 . 教学重点比较法的意义和基本步骤 . 教学难点常见的变形技巧 . 教学方法启发引导式 . 教学过程 (-)导入新课 (教师活动 )教师提问 :根据前一节学过的知识 ,我们如何用实数运算来比较两个实数与的大小 ?. (学生活动 )学生思考问题 ,找学生甲口答问题 . (学生甲回答 :,) 7 / 12 点评 (待学生回答问题后 )要比较两个实数与的大小 ,只要考察与的差值的符号就可以了 ,这种证实不等式的方法称为比较法 .现在我们就来学习 :用比较法证实不等式 .(板书课题 ) 设计意 图 :通过教师设置问题 ,引导学生回忆所学的知识 ,引出用比较法证实不等式 ,导入本节课学习的知识 . (二 )新课讲授 尝试探索 ,建立新知 (教师活动 )教师板书问题 (证实不等式 ),写出一道例题的题目 问题 求证 教师引导学生分析、思考 ,研究不等式的证实 . (学生活动 )学生研究证实不等式 ,尝试完成问题 . (得出证实过程后 ) 点评 通过确定差的符号 ,证实不等式的成立 .这一方法 ,在前面比较两个实数的大小、比较式子的大小、证实不等式性质就已经用过 . 通过求差将不等问题转化为恒等问题 ,将两个一般式 子大小比较转化为一个一般式子与 0 的大小比较 ,使问题简化 . 理论依据是 : 由 ,知 :要证实只要证 ;要证实这种证实不等式的方法通8 / 12 常叫做比较法 . 设计意图 :帮助学生构建用比较法证实不等式的知识体系 ,培养学生化归的数学思想 . 例题示范 ,学会应用 (教师活动 )教师板书例题 ,引导学生研究问题 ,构思证题方法 ,学会解题过程中的一些常用技巧 ,并点评 . 例 1 求证 (学生活动 )学生在教师引导下 ,研究问题 .与教师一道完成问题的论证 . 分析 由比较法证题的方法 ,先将不等式两边作差 ,得 ,将此式看作关于的二次函数 ,由配方法易知函数的最小值大干零 ,从而使问题获证 . 证实 : = =, . 点评 作差后是通过配方法对差式进行恒等变形 ,确定差的符号 . 作差后 ,式于符号不易确定 ,配方后变形为一个完全平方式子与一个常数和的形式 ,使差式的符号易于确定 . 不等式两边的差的符号是正是负 ,一般需要利用不等式的性质经过变形后 ,才能判定 . 9 / 12 变形的目的全在于判定差的符号 ,而不必考虑差的值是多少 .至于怎样变形 ,要灵活处理 ,例 1介绍了变形的一种常用方法 配方法 . 例 2 已知都是正数 ,并且 ,求证 : 分析 这是分 式不等式的证实题 ,依比较法证题将其作差 ,确定差的符号 ,应通分 ,由分子、分母的值的符号推出差值的符合 ,从而得证 . 证实 : = =. 因为都是正数 ,且 ,所以 . . 即 : 点评 作差后是通过通分法对差式进行恒等变形 ,由分子、分母的值的符号推出差的符号 . 本例题介绍了对差变形 ,确定差值的符号的一种常用方法 通分法 . 例 2 的结论反映了分式的一个性质 (若都是正数 . 1.当时 , 2.当时 ,.以后要记住 . 10 / 12 设计意图 :巩固用比较法证实不等式的知识 ,学会在用比较法证实不等式中 ,对差式 变形的常用方法 配方法、通分法 . 课堂练习 (教师活动 )打出字幕 (练习 ),要求学生独立思考 .完成练习 ;请甲、乙两学生板演 ;巡视学生的解题情况 ,对正确的证法给予肯定和鼓励 ,对偏差点拨和纠正 ;点评练习中存在的问题 . 字幕 练习 :1.求证 2.已知 ,d都是正数 ,且 ,求证 (学生活动 )在笔记本上完成练习 ,甲、乙两位同学板演 . 设计意图 ,把握用比较法证实不等式 ,并会灵活运用配方法和通分法变形差式 ,确定差式符号 .反馈课堂教学效果 ,调节课堂教学 . 分析归纳、小结解法 (教学活动 )分析归纳例题和 练习的解题过程 ,小结用比较法证实不等式的解题方法 . (学生活动 )与教师一道分析归纳 ,小结解题方法 ,并记录笔记 . 比较法是证实不等式的一种最基本、重要的方法 .用比较法证实不等式的步骤是 :作差、变形、判定符号 .要灵活把握配方法和通分法对差式进行恒等变形 . 11 / 12 设计意图 :培养学生分析归纳问题的能力 ,把握用比较法证实不等式的方法 . (三 )小结 (教师活动 )教师小结本节课所学的知识 . (学生活动 )与教师一道小结 ,并记录笔记 . 本节课学习了用比较法证实不等式 ,用比较法证实不等式的步骤中 ,作差是依据 ,变形是手段 ,判定符号才是目的 .把握求差后对差式变形的常用方法 :配方法和通分法 .并在下节课继续学习对差式变形的常用方法 . 设计意图 :培养学生对所学知识进行概括归纳的能力 ,巩固所学知识 . (四 )布置作业 1.课本作业 :,2,3. 2.思考题 :已知 ,求证 : 3.研究性题 :设 ,都是正数 ,且 ,求证 : 设计意图 ,课本作业供学生巩固基础知识 ;思考题供学有余力的学生完成 ,培养其灵活把握用比较法证实不等式的能力 ;研究性题是为培养学生创新意识 . (五 )课后点评 1.本节课是用比较法证实不等式的第一节课 ,在导入新课时 ,教 师提出问题 ,让学生回忆所学知识中 ,是如何比较两个实数大小的 ,从而引入用比较法证实不等式 .这样处理合情合12 / 12 理 ,顺理成章 . 2.在建立新知过程中 ,教师引导学生分析研究证实不等式 ,使学生在尝试探索过程中形成用比较法证实不等式的感性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论