2016年高考数学大题限时狂练五-圆锥曲线.doc_第1页
2016年高考数学大题限时狂练五-圆锥曲线.doc_第2页
2016年高考数学大题限时狂练五-圆锥曲线.doc_第3页
2016年高考数学大题限时狂练五-圆锥曲线.doc_第4页
2016年高考数学大题限时狂练五-圆锥曲线.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2016年高考数学大题限时狂练五:圆锥曲线(共70分,限时60分)解答题(本大题共6小题解答时应写出必要的文字说明、证明过程或演算步骤)一、 2015新课标一高考在直角坐标系xoy中,曲线C:y=与直线(0)交与M,N两点,()当k=0时,分别求C在点M和N处的切线方程;()y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由。二、 已知C过点P(1,1),且与M:(x2)2(y2)2r2(r0)关于直线xy20对称(1)设Q为C上的一个动点,求的最小值;(2)过点P作两条相异直线分别与C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?并说明理由三、2014长春二调如图,已知点A(1,)是离心率为的椭圆C:1(ab0)上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点互不重合(1)求椭圆C的方程;(2)求证:直线AB、AD的斜率之和为定值四、 已知椭圆C:1经过点(0,),离心率为,直线l经过椭圆C的右焦点F交椭圆于A、B两点,点A、F、B在直线x4上的射影依次为D、K、E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且,当直线l的倾斜角变化时,探求的值是否为定值?若是,求出的值;否则,说明理由;(3)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由五、 2014浙江高考已知ABP的三个顶点都在抛物线C:x24y上,F为抛物线C的焦点,点M为AB的中点,3.(1)若|PF|3,求点M的坐标;(2)求ABP面积的最大值所以,当m时,f(m)取到最大值,此时k.六、 2014陕西高考已知椭圆1(ab0)经过点(0,),离心率为,左、右焦点分别为F1(c,0),F2(c,0)(1)求椭圆的方程;(2)若直线l:yxm与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足,求直线l的方程答案解析一、 2015新课标一高考在直角坐标系xoy中,曲线C:y=与直线(0)交与M,N两点,()当k=0时,分别求C在点M和N处的切线方程;()y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由。【答案】()或()存在【解析】试题分析:()先求出M,N的坐标,再利用导数求出M,N.()先作出判定,再利用设而不求思想即将代入曲线C的方程整理成关于的一元二次方程,设出M,N的坐标和P点坐标,利用设而不求思想,将直线PM,PN的斜率之和用表示出来,利用直线PM,PN的斜率为0,即可求出关系,从而找出适合条件的P点坐标.试题解析:()由题设可得,或,.,故在=处的到数值为,C在处的切线方程为,即.故在=-处的到数值为-,C在处的切线方程为,即. 故所求切线方程为或. 5分()存在符合题意的点,证明如下: 设P(0,b)为复合题意得点,直线PM,PN的斜率分别为. 将代入C得方程整理得. . =. 当时,有=0,则直线PM的倾斜角与直线PN的倾斜角互补, 故OPM=OPN,所以符合题意. 12分考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力二、 已知C过点P(1,1),且与M:(x2)2(y2)2r2(r0)关于直线xy20对称(1)设Q为C上的一个动点,求的最小值;(2)过点P作两条相异直线分别与C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?并说明理由解(1)设圆心C(a,b),半径为r,则由题意,得解得则圆C的方程为x2y2r2,将点P的坐标代入,得r22,故圆C的方程为x2y22.设Q(x,y),则x2y22,且(x1,y1)(x2,y2)x2y2xy4xy2. 令xcos,ysin,则xy22sin()2,所以当时,的最小值为4.(2)由题意,知直线PA和直线PB的斜率都存在,且互为相反数,故可设直线PA:y1k(x1),直线PB:y1k(x1),由得(1k2)x22k(1k)x(1k)220.因为点P的横坐标x1一定是该方程的解,故可得xA,同理得xB,所以kAB1kOP.所以直线AB和OP一定平行三、2014长春二调如图,已知点A(1,)是离心率为的椭圆C:1(ab0)上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点互不重合(1)求椭圆C的方程;(2)求证:直线AB、AD的斜率之和为定值解(1)由题意,可得e,将(1,)代入1,得1,又a2b2c2,解得a2,b,c,所以椭圆C的方程为1.(2)证明:设直线BD的方程为yxm,又A、B、D三点不重合,所以m0.设D(x1,y1)、B(x2,y2),由,得4x22mxm240,所以8m26402m0,x1x24k,x1x24m,所以AB中点M的坐标为(2k,2k2m)由3,得(x0,1y0)3(2k,2k2m1),所以由x4y0得k2m.由0,k20,得f,所以,当m时,f(m)取到最大值,此时k.所以,ABP面积的最大值为.六、 2014陕西高考已知椭圆1(ab0)经过点(0,),离心率为,左、右焦点分别为F1(c,0),F2(c,0)(1)求椭圆的方程;(2)若直线l:yxm与椭圆交于A,B两点,与以F1F2为直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论