




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019-2020学年高二数学元月月考试题 理(含解析)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知等差数列中,公差,若时,则的值为( )A. 99 B. 96 C. 100 D. 101【答案】C【解析】试题分析:因为,所以,所以故选B考点:等差数列的通项公式2. 设,则是的( )A. 必要而不充分条件 B. 充分而不必要条件C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】 设,当时,满足,但不满足,故由,则不能推出,而,则是成立的,所以是的必要不充分条件,故选A.3. 已知命题 ,命题若,则.下列命题为真命题的是( )A. B. C. D. 【答案】B【解析】 由题意得,命题,所以是真命题; 命题:若,则是真命题,所以是真命题,故选A.4. 已知为空间任意一点,若,则四点( )A. 一定不共面 B. 一定共面 C. 不一定共面 D. 无法判断【答案】B【解析】 因为点为空间任意一点,QIE , 因为,所以由共面向量定理可得四点共面,故选B.5. 命题为真命题的一个充分不必要条件是( )A. B. C. D. 【答案】C【解析】 命题为真命题,可化为“恒成立”,则只需,即为真命题的充要条件为,而要找的是一个充分不必要条件即为集合的真子集,由选项可知C符合题意,故选C.6. 在数列中,若,则数列的通项公式为( )A. B. C. D. 【答案】A【解析】因为,所以,数列是等差数列,由等差数列通项公式得,所以,选A.7. 已知为等差数列,若,且它的前项和有最大值,那么当取得最小正值时,的值为( )A. 11 B. 17 C. 19 D. 21【答案】C【解析】试题分析:由于前项和有最大值,所以,根据,有,所以,结合选项可知,选C.考点:等差数列的基本性质.8. 已知的内角所对的边分别为,若,且,则等于( )A. B. C. D. 【答案】D【解析】 由,利用正弦定理可得,由于,所以,又,可得,所以,故选D.9. 某三棱锥的三视图如图所示,则该三棱锥的体积为( ) A. 60 B. 30 C. 20 D. 10【答案】D【解析】由三视图可知:该几何体为如图所示的三棱锥 ,图中长方体的长宽高分别是 ,该三棱锥的体积 ,故选 .【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10. 若实数满足约束条件,目标函数 仅在点处取得最小值,则实数的取值范围是( )A. B. C. D. 【答案】B【解析】 作出约束条件所表示的平面区域,如图所示, 将,化成,.即目标函数仅在处取得最小值,解得,故选B.11. 如图,在正方形中,分别是的中点,沿把正方形折成一个四面体,使三点重合,重合后的点记为 点在AEF 内的射影为,则下列说法正确的是( )A. 是的垂心 B. 是 的内心C. 是 的外心 D. 是的重心【答案】A【解析】 由题意得,可知两两垂直,由平面,从而, 而平面,从而, 所以平面,所以,同理可知,所以为的垂心,故选A. 点睛:本题考查了三角形垂心的性质,考查了直线和平面垂直的判定定理和性质定理,以及直线和直线垂直的判定,在证明线线垂直时,其常用的方法是利用证明线面垂直,在证明线线垂直,同时熟记线面位置关系的判定定理和性质定理是解答的关键,试题属于中档试题.12. 在中,的交点为,过作动直线分别交线段 于两点,若,(),则的最小值为( )A. B. C. D. 【答案】D【解析】 由三点共线可得存在实数使得, 同理三点共线可得存在实数使得, 所以,所以, 设,则,即,故,所以的最小值为,故选D.点睛:本题考查了平面向量在几何问题中的应用,其中根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的比分点公式表示向量,计算数量积,选取基地很重要,(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若关于的不等式的解集为,则关于的不等式的解集_【答案】【解析】 因为关于的不等式的解集为,所以,所以不等式 可化为,即,解得:,所以不等式的解集为.14. 若,且 ,则的最小值为 _ 【答案】16【解析】 因为,且,所以, 所以,当且仅当时等号成立,所以的最小值为.15. 已知函数,若存在使得成立,则实数的取值范围是_ ;【答案】16. 如图,在直角梯形中,将沿向上折起,使面面,则三棱锥的外接球的表面积为_【答案】【解析】试题分析:由题意得三棱锥的外接球的球心为外心,因为因此外接球的直径为,表面积为考点:外接球的表面积,正弦定理【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 设实数满足,其中,实数满足(1)若, 且真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.【答案】(1);(2)【解析】试题分析:(1)为真命题,则命题、命题均为真,命题为真时,命题为真时,所以;(2)设命题的集合为,命题的集合为,若是的必要不充分条件,则是集合的真子集,解得试题解析:() 由得,又,故, 当时,有,即命题为真时, 解不等式组得, 命题为真时, 为真命题, 命题、命题均为真, ; ()由()知命题:,命题:设集合,集合 是的必要不充分条件, 集合是集合的真子集, ,解得点睛:(1)考察命题的真值表,为真命题,则命题、命题均为真,将命题、命题均为真的解集都解出来,取交集即可;(2)考察充分、必要条件在集合中的推导关系,本题中是的必要不充分条件,则是集合的真子集,解得答案。18. 已知,(1)求证:,并指出等号成立的条件;(2)求函数的最小值,并求出等号成立时的值.【答案】(1)见解析;(2)25【解析】试题分析:()将展开,应用均值不等式即可得出最小值为,从而证明不等式;()由()知,从而可求函数的最小值试题解析:(1),考点:用均值不等式证明不等式与求函数的最值19. 中,角的对边分别是.(1)求;(2)若,的面积为,判断此三角形的形状【答案】(1);(2)正三角形【解析】试题分析:(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得,结合范围,进而可求得值;(2)利用三角形面积公式可求,进而利用余弦定理可求,即可解得,即可得解.试题解析:由正弦定理及得 ,(2),由余弦定理得:,故是正三角形20. 已知是等比数列的前项和,成等差数列,且.(1)求数列的通项公式;(2)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,请说明理由.【答案】(1);(2)【解析】试题分析: (1)直接由题意列方程组求出数列的首项和公比,则数列的通项公式可求;(2)求出数列的前项和,由,求得满足条件的的值,则的集合可求.试题解析:(1)设等比数列的公比为,则.由题意得,即,解得.故数列的通项公式为.(2)由(1)有.若存在n,使得,则,即.当n为偶数时,上式不成立;当n为奇数时,即,则.综上,存在符合条件的正整数n,且n的集合为点睛:本题考查了数列的综合问题,在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.本题的难点在于求和后,根据为奇数和偶数分类讨论.21. 如图所示,平面平面,四边形为矩形,点为的中点.(1)证明:平面.(2)点为上任意一点,在线段上是否存在点,使得?若存在,确定点的位置,并加以证明;若不存在,请说明理由.【答案】(1)见解析;(2)中点【解析】试题分析:(1)连接交于,连接,利用是矩形得到,再由线面平行的判定定理可证;(2)当为中点时,有;取中点,连接,结合三角形的中位线性质以及面面平行的性质进行推理得到平面即可.试题解析:(1)证明连接AC交BD于O,连接OF,如图.四边形ABCD是矩形,O为AC的中点,又F为EC的中点,OF为ACE的中位线,:OFAE,又OF平面BDF,AE平面BDF,AE平面BDF.(2)当P为AE中点时,有PMBE,证明如下:取BE中点H,连接DP,PH,CH,如图P为AE的中点,H为BE的中点,PHAB,又ABCD,PHCD,P,H,C,D四点共面平面ABCD平面BCE,CDBCCD平面BCE,又BE平面BCE,CDB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省宜昌市长阳县2026届化学九年级第一学期期中统考试题含解析
- 2026届四川省成都市新都区英语九年级第一学期期末调研试题含解析
- 化验员读本培训
- 2026届内蒙古翁牛特旗九年级化学第一学期期末考试试题含解析
- 2026届山东省莱城区刘仲莹中学英语九年级第一学期期末达标测试试题含解析
- 山东省枣庄市第三十二中学2026届九上化学期中监测试题含解析
- 太湖县五校联考2025-2026学年八年级上学期开学道德与法治试题
- 山东省烟台某中学高三上学期调研考试数学-试题
- 黑龙江省大兴安岭松岭区古源中学2026届英语九年级第一学期期末经典试题含解析
- 2025年辅警考试面试题及答案
- 年产62万吨甲醇制烯烃(MTO)项目初步设计说明书
- 联通创新人才认证(解决方案)考试题库(附答案)
- 全成本管理探索与实践
- 电烙铁焊接技术培训
- ICU患者的早期活动
- 出纳课件 转账支票pptx
- TSZUAVIA 009.11-2019 多旋翼无人机系统实验室环境试验方法 第11部分:淋雨试验
- ps6000自动化系统用户操作及问题处理培训
- 商务礼仪情景剧剧本范文(通用5篇)
- 2021年东台市城市建设投资发展集团有限公司校园招聘笔试试题及答案解析
- 某县干部周转宿舍工程可行性研究报告
评论
0/150
提交评论