




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018高考文科数学答题技巧精品文档 2018高考文科数学答题技巧 答题技巧是一门学问,答题顺序、审题方式、遇到难题的处理等都大有讲究。下面学习啦小编给大家带来高考文科数学答题技巧,希望对你有帮助。 高考文科数学答题技巧 1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。 .圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了。 .空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得! .立体几何中,求二面角B-OA-C的新方法。利用三面角余弦定理。设二面角B-OA-C是?OA,?AOB是,?BOC是,?AOC是,这个定理就是:cos?OA=(cos-coscos)/sinsin。知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了。 .数学(理)线性规划题,不用画图直接解方程更快 1 / 8 精品文档 .数学最后一大题第三问往往用第一问的结论 .数学(理)选择填空图形题,按比例画图有尺子量,零基础直接秒,所以尺子真有用。 .数学选择不会时去除最大值与最小值再二选一,高考题百分之八十是这样。 .超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。如果条件过多,用图像法秒杀。不等式也是特值法图像法。 高考文科数学公式 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 线线平行常用方法总结: (1)定义:在同一平面内没有公共点的两条直线是平行直线。 (2)公理:在空间中平行于同一条直线的两只直线互相平行。 (3)初中所学平面几何中判断直线平行的方法 2 / 8 精品文档 (4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。 (5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。 (6)面面平行的性质:若两个平行平面同时与第三个平面相交,则它们的交线平行。 线面平行的判定方法: ?定义:直线和平面没有公共点. ()判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行 (3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面 (4)线面垂直的性质:平面外与已知平面的垂线垂直的直线平行于已知平面 判定两平面平行的方法: (1)依定义采用反证法 (2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。 (3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。 (4)垂直于同一条直线的两个平面平行。 3 / 8 精品文档 (5)平行于同一个平面的两个平面平行。 证明线与线垂直的方法: (1)利用定义(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。 证明线面垂直的方法: (1)线面垂直的定义 (2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。 (3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。 (4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。 (5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。 高考文科数学复习方法 1.强化“三基”,夯实基础 所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高深的,丢了基本的。 考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从“知识立意”向“能力立意”转变,考试4 / 8 精品文档 大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。 新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交流能力,数学实践能力,数学思维能力。 考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完整的结构,达到“牵一发而动全身”的境界。 强化基本技能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题、反思矫正等方面下功夫,尽量不丢或少丢一些不应该丢失的分数。 要注重基本数学思想方法在日常训练中的渗透,逐步提高学生的思维能力。 夯实解题基本功。高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中最基本的有:解题的知识因素、能力因素、经验因素、非智力因素。学生在答卷中除了知识性错误之外,还有逻辑性错误和策略性错误和心理性错误。 数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。 5 / 8 精品文档 . 全面复习,系统整理知识,查漏补缺,优化知识结构 这是第一阶段复习中应该重点解决的问题。考生在这一过程应牢牢抓住以下几点:?概念的准确理解和实质性理解;?基本技能、基本方法的熟练和初步应用;?公式、定理的正逆推导运用,抓好相互的联系、变形和巧用。 经过全面复习这一阶段的努力,应使达到以下要求:?按大纲要求理解或掌握概念;?能理解或独立完成课本中的定理证明;?能熟练解答课本上的例题、习题;?能简要说出各单元题目类型及主要解法;?形成系统知识的合理结构和解题步骤的规范化。 这一阶段的直接效益是会考得优,其根本目的是为数学素质的提高准备物质基础。认真做好全面复习,才谈得上灵活性和综合性,才能适应高考踩分点多、覆盖面广的特点。 这一阶段复习的基本方法是从大到小、先粗后细,把教学中分割讲授的知识单点、知识片断组织合成知识链、知识体系、知识结构,使之各科内容综合化;基础知识体系化;基本方法类型化;解题步骤规范化。这当中,辅以图线、表格、口诀等已被证明是有益的,“习题化”的复习技术亦被证明是成功的,如,基本内容填空,基本概念判断,基本公式串联,基本运算选择。 .加强对知识交汇点问题的训练 课本上每章的习题往往是为巩固本章内容而设置的,所6 / 8 精品文档 用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。 要形成有效的知识网络。知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解,更具操作性的解题经验。 综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。由于课程内容的变化,使知识的交汇点出现了新动向,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中化学 第2章 化学反应的方向、限度与速率 第4节 化学反应条件的优化说课稿 鲁科版选修4
- Unit1 Reading 1 说课稿 2024-2025学年译林版(2024)七年级英语下册
- 2.1两条直线的位置关系(一)说课稿 2025-2026学年北师大版七年级数学上册
- 蔬菜合作社专业知识培训课件
- 2025年中考数学总复习《角、相交线和平行线》专项检测卷(附答案)
- 地产公司工业化建造体系薄砌薄抹应用技术指引
- 综合复习与测试教学设计-2025-2026学年高中数学人教B版2019必修第一册-人教B版2019
- 2025年中考化学试题分类汇编:化学与社会(第2期)原卷版
- 蓄禽养殖小知识培训总结课件
- 13.2画轴对称图形 说课稿 2024-2025学年人教版数学八年级上册
- 2025-2026秋“1530”安全教育记录表
- 催乳相关培训知识课件
- 2025汽车智能驾驶技术及产业发展白皮书
- 2025年幼儿园食堂从业人员培训测试题(含答案)
- 会计档案培训课件
- 企业员工职业道德培训教材及案例
- 施工临时用水用电方案(3篇)
- 工贸行业安全知识培训课件
- 2025福建漳州市交通发展集团有限公司招聘试题及答案
- 2025年职业卫生技术服务专业技术人员考试(放射卫生检测与评价)历年参考题库含答案详解(5卷)
- PE管道铺设质量检测方案
评论
0/150
提交评论