直动式减压阀设计.docx_第1页
直动式减压阀设计.docx_第2页
直动式减压阀设计.docx_第3页
直动式减压阀设计.docx_第4页
直动式减压阀设计.docx_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江大学2011-2012学年秋冬学期气动电子技术课程设计题 目 直动式减压阀特性曲线分析 姓名与学号 林嘉颖 3090100768 指导教师 陶国良 年级与专业 机械电子工程0902 所在学院 机械工程学系 一 主要参数及工作原理如图,直动式减压阀由主阀芯1,膜片2,弹簧3,调节手柄4,主阀体5组成.其中P1为气源压力P2为减压输出压力Fs弹簧预紧压力A为膜片的面积。当P2*Fs时,主阀芯上移,主阀口关闭,使P2逐渐下降。如果是卸压型直动式减压器,在主阀芯和弹簧之间(3)装上小型溢流阀,当P2*AFs时,膜片上移,顶开活塞,气体便从膜片上方溢流出去。二 方案设计根据相关参数使用solidworks对减压阀进行尺寸设计,再使用matlab及excel对数据进行仿真与分析.根据相关资料,使用solidworks设计尺寸如下:进气口直径D1=20mm出气口直径D2=20mm 溢流口工作直径d1=11mm d2=14mm膜片接触面积设计 Error! Main Document Only.膜片与出气缸中气体接触面积的直径 d=80mm主阀芯下表面圆直径为d3=21mm,阀体直径为d4=20mm。主阀芯直径为d5=8mm。溢流口设计 Error! Main Document Only.如下表,选择进口压力最高1.6MPa,则出口压力为0.11.0MPa设弹簧最大伸长量为12mm(P1小于特定压力时,主阀芯全开,此时8mm处恰好在交界口处。当P1大于特定压力时,理想状态是P2保持不变。主阀芯恰好封紧,上升12mm)弹簧弹性系数k将在后续中求得。气体设为标准状态。温度273.15K(0),压力101.325KPaR=8.314410.00026J/(molK)。空气密度为=1.293kg/m3三 特性曲线3.1 流量特性曲线理想特性曲线如下:减压阀理想特性曲线 1受力分析:在流量不变时,以膜和主阀芯为分析对象向上的力:P1对主阀芯的力,P对主阀芯的摩擦力.P2对膜的力.(此处压力均为相对压力)向下的力:主要为弹簧对膜的压力.理想状况下,忽略摩擦力,则有力的平衡方程:P1*d424+P2*(d2-d12)4=k(-x+x0)+ P2*d42420由于主阀芯尾部有一定的锥度,若以与阀体平行线为分界线(如图)设在p1=p2=0时楔形口处于下方,边沿与开口平齐,当p1=p2=1.0MPa时,楔形口与开口接触。此时x=-x+x0=12mm代入P1*d424+P2*(d2-d12)4=k(x)+ P2*(d42-d12)4; d6=(8+x)mm得弹性系数k=418.879KN/m取k=420KN/m若设分界线以上压强为P2,分界线以下为P1,为简化计算过程,设P1的作用力一直为直径20mm的圆力的平衡方程修正如下:P1*d424+P2*(d2-d12)4=k(x)+ P2*(d42-d12)4P2=kx-P1*d424d2-d124-(d42-d12)4=4*420x-P1*202(802-202)MPax0,12mm当P2P10.5283时流量为:Q=SeP12kk-1*1RT1(P2P1)2k-(P2P1)k+1k k=1.4;P2P10.5283时,Q=SeP1kRT1(1k+1)k+1k-1;Se为截面有效面积,Se=202-8+x24*10-6m2; x0,12mm;由理想状态的减压特性曲线得:当p10.5283。P1=0.5MPa时,首先对P2=kx-P1*d624d2-d124-(d62-d12)4=4*420x*106-P1*8+x2802-8+x2求反函数。Matlab求反函数如下: p1=0.5p1 = 0.5000 syms x p2=(4*420*x-p1*pi*(8+12)2)/(pi*802-pi*(8+12)2) p2 = -(200*pi - 1680*x)/(6000*pi) deltax=finverse(p2) deltax = (25*pi*(x + 1/30)/7 其中上式的deltax为x,x为P2。代入Se中,得: Se=pi*(400-(8+deltax)2 )/4 Se = -(pi*(25*pi*(x + 1/30)/7 + 8)2 - 400)/4 其中的x仍为P2,单位为MPa。Se单位为mm2再通过Q=SeP12kk-1*1RT1(P2P1)2k-(P2P1)k+1k k=1.4;求Q. k=1.4; R=8.31441; T=273.15;Q=(2*k/(k-1)*R*T)*(x/p1 )(2/k)-(x/p1 )(k+1)/k)(1/2)*Se*p1 Q = -(pi*(3553572156649665*(2*x)(10/7)/1152921504606846976 - (3553572156649665*(2*x)(12/7)/1152921504606846976)(1/2)*(25*pi*(x + 1/30)/7 + 8)2 - 400)/8由于用matlab不能求出Q的反函数,因此应用插值的方法,以弹簧伸长量为中间变量,从而求出Q和P2的关系,通过EXCEL来进行插值法描点.设P1=0.5MPa时,编写如下两段matlab程序:for i=5.9:0.01:6 p1=0.5; p2=(4*420*i-p1*pi*(8+12)2)/(pi*802-pi*(8+12)2); x=p2; Q =-(pi*(3553572156649665*(2*x)(10/7)/1152921504606846976 - (3553572156649665*(2*x)(12/7)/1152921504606846976)(1/2)*(25*pi*(x + 1/30)/7 + 8)2 - 400)/8; fprintf(%12.8fn,Q)fprintf(%12.8fn,x)endfor i=4:0.1:5.9 p1=0.5; p2=(4*420*i-p1*pi*(8+12)2)/(pi*802-pi*(8+12)2); x=p2; Q =-(pi*(3553572156649665*(2*x)(10/7)/1152921504606846976 - (3553572156649665*(2*x)(12/7)/1152921504606846976)(1/2)*(25*pi*(x + 1/30)/7 + 8)2 - 400)/8; fprintf(%12.8fn,Q)fprintf(%12.8fn,x)end经过整理得 流量Q出口压力P2流量Q出口压力P2流量Q出口压力P21.399171660.323173741.016028240.41230050.274414650.493405871.371048210.332086420.963251250.42121320.255099490.494297131.340798750.340999090.906919050.43012590.234228780.49518841.308401170.349911770.846504870.43903850.211342810.496079671.273820390.358824450.78125760.44795120.185698670.496970941.237005880.367737120.710057620.45686390.15594240.49786221.197888230.37664980.631127220.46577660.119030040.498753471.156374670.385562480.541362410.47468930.063518630.499644741.112342690.394475150.434421170.483601900.500536011.065631290.403387830.292482130.492514600.50142728用excel得图线为: 同理,分别计算当入口压力P1=0.8MPa,1MPa,0.2MPa时的曲线,(其中Q的特性曲线因为P1的变化而变化,需要通过以下程序段计算每一次Q的函数式:p1=0.2; syms x p2=(4*420*x-p1*pi*(8+12)2)/(pi*802-pi*(8+12)2); deltax=finverse(p2); Se=pi*(400-(8+deltax)2 )/4; R=8.31441;k=1.4;T=273.15; Q=(2*k/(k-1)*R*T)*(x/p1 )(2/k)-(x/p1 )(k+1)/k)(1/2)*Se*p1P1=0.5MPAP1=0.8MPAP1=1MPAP1=0.2MPA流量Q出口压力P2流量Q出口压力P2流量Q出口压力P2流量Q出口压力P21.399171660.323173741.392936630.583923061.399272750.68196250.7075010.100535231.371048210.332086421.371927060.58837941.376947020.686418840.7064020.104991571.340798750.340999091.350740060.592835741.354535850.690875180.7037520.109447911.308401170.349911771.329378580.597292071.332044050.695331520.6995520.113904241.273820390.358824451.307845470.601748411.309476480.699787860.6937950.118360581.237005880.367737121.286143510.606204751.286838080.70424420.6864650.122816921.197888230.37664981.264275380.610661091.264133810.708700530.6775320.127273261.156374670.385562481.242243650.615117431.241368710.713156870.6669590.13172961.112342690.394475151.220050770.619573771.218547860.717613210.6546910.136185941.065631290.403387831.197699060.62403011.195676420.722069550.6406590.140642271.016028240.412300511.175190690.628486441.172759620.726525890.6247730.145098610.963251250.421213181.152527690.632942781.149802730.730982230.6069180.149554950.906919050.430125861.129711890.637399121.126811110.735438560.5869480.154011290.846504870.439038541.10674490.641855461.103790210.73989490.5646730.158467630.78125760.447951211.083628150.64631181.080745520.744351240.5398420.162923970.710057620.456863891.060362760.650768131.057682650.748807580.5121250.16738030.631127220.465776571.036949610.655224471.034607270.753263920.4810640.171836640.541362410.474689251.013389210.659680811.011525150.757720260.4460080.176292980.434421170.483601920.989681720.664137150.988442140.76217660.4059730.180749320.292482130.49251460.965826880.668593490.965364220.766632930.3593580.185205660.274414650.493405870.941823940.673049830.942297430.771089270.3032110.1896620.255099490.494297130.917671580.677506170.919247940.775545610.2307670.194118330.234228780.49518840.893367860.68196250.896222040.780001950.1145860.198574670.211342810.496079670.868910090.686418840.873226120.7844582900.203031010.185698670.496970940.844294720.690875180.85026670.7889146300.207487350.15594240.49786220.819517210.695331520.827350440.793370960.119030040.498753470.794571840.699787860.804484120.79782730.063518630.499644740.76945150.70424420.781674680.8022836400.500536010.744147440.708700530.758929210.8067399800.501427280.718648960.713156870.736254940.811196320.6929430.717613210.71365930.815652660.667013650.722069550.691149880.820108990.64084150.726525890.668734460.824565330.614402830.730982230.646421030.829021670.587668530.735438560.624217780.833478010.560602690.73989490.602133140.837934350.533160610.744351240.580175770.842390690.505286210.748807580.558354590.846847020.476908140.753263920.53667880.851303360.447934390.757720260.515157890.85575970.418243920.76217660.493801650.860216040.387673750.766632930.472620230.864672380.355997720.771089270.451624140.869128720.322889340.775545610.430824250.873585060.287851660.780001950.41023190.878041390.250069310.784458290.389858860.882497730.208042810.788914630.369717410.886954070.158413990.793370960.349820370.891410410.089264020.79782730.330181160.8958667500.802283640.310813850.9003230900.806739980.291733250.9047794200.811196320.272954960.9092357600.815652660.254495470.913692100.820108990.236372270.9181484400.824565330.2186040.9226047800.829021670.201210520.9270611200.833478010.184213210.9315174500.837934350.167635070.935973790.151501060.940430130.13583840.944886470.120677030.949342810.106050090.953799150.091994680.958255480.07855280.962711820.065772650.967168160.053710540.97162450.042433670.976080840.032024560.980537180.02258840.984993520.014266650.989449850.007264640.993906193.2 压力特性曲线由上述公式,约去中间变量x,matlab公式为:syms p1 syms p2 deltax=pi*(75*p2-5*p1)/21; Se=pi*(400-(8+deltax)2 )/4; R=8.31441;k=1.4;T=273.15; Q=(2*k/(k-1)*R*T)*(p2/p1 )(2/k)-(p2/p1 )(k+1)/k)(1/2)*Se*p1Q = -(pi*p1*(3553572156649665*(p2/p1)(10/7)/1152921504606846976 - (3553572156649665*(p2/p1)(12/7)/1152921504606846976)(1/2)*(pi*(5*p1 - 75*p2)/21 - 8)2 - 400)/4由于Q=SeP12kk-1*1RT1(P2P1)2k-(P2P1)k+1k过于复杂,直接用matlab解不出P2的值。由理想特性曲线及老师上课笔记得P2P11.设P2P1=0.85,代入上式,得Q的简化表达式。因此由matlab算法,设Q=1dm3/s,有 p2=solve(1=-(pi*p1*(3553572156649665*(0.85)(10/7)/1152921504606846976 - (3553572156649665*(0.85)(12/7)/1152921504606846976)(1/2)*(pi*(5*p1 - 75*x)/21 - 8)2 - 400)/4) p2 = (1.0*10(-67)*(4.8026710038503888982870641436426*1066*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2) - 7.1301414505169110424459925990886*1066*p1 + 6.6666666666666666666666666666667*1065*p12)/p1 -(1.0*10(-67)*(7.1301414505169110424459925990886*1066*p1 + 4.8026710038503888982870641436426*1066*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2) - 6.6666666666666666666666666666667*1065*p12)/p1 对结果进行简化: p=simplify(p2) p = 0.066666666666666666666666666666667*p1 + (0.48026710038503888982870641436426*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2)/p1 - 0.71301414505169110424459925990886 0.066666666666666666666666666666667*p1 - (0.48026710038503888982870641436426*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2)/p1 - 0.71301414505169110424459925990886取P20的值,得出P2与P1的关系for p1=0.4:0.05:2 p2=0.066666666666666666666666666666667*p1 + (0.48026710038503888982870641436426*(- 4.6588965684808449721090220054471*10(-34)*p14 + 9.9655774465618838997905594373673*10(-33)*p13 + 13.775603498253215348712157917925*p12 - 4.164349376412757690974805339266*p1)(1/2)/p1 - 0.71301414505169110424459925990886;fprintf(%12.8fn,p2)end 由此得P2的值:同理,分别解出Q=0.4,0.8,1.2时P1与P2的关系,得:(单位均为MPa)P1Q=0.4的P2Q=0.8的P2Q=1.2的P2Q=1的P20.05-0.70968081-0.7096808-0.7096808-0.709680810.1-0.70634748-0.7063475-0.7063475-0.706347480.15-0.703014150.08184749-0.7030142-0.703014150.2-0.699680810.42119559-0.6996808-0.699680810.25-0.374287120.58450286-0.6963475-0.696347480.30.091847490.68420045-0.6930142-0.693014150.350.301240770.75242839-0.6896808-0.031616310.40.434528930.80257768-0.14244520.194616090.450.529345520.841329690.101847490.338216420.50.601169530.872416140.254209030.441195590.550.657928230.898092740.363710850.519899360.60.704200450.919806050.447862260.582590090.650.742847550.938527620.515282650.634039790.70.775761720.954934620.570908460.677244950.750.804249470.969513780.61783620.714200450.80.829244340.982624040.658132160.746293790.850.851432390.994535990.693239140.774523610.90.8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论