北师大版数学八下《定义与命题》听课课件23456.ppt_第1页
北师大版数学八下《定义与命题》听课课件23456.ppt_第2页
北师大版数学八下《定义与命题》听课课件23456.ppt_第3页
北师大版数学八下《定义与命题》听课课件23456.ppt_第4页
北师大版数学八下《定义与命题》听课课件23456.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.1定义与命题,富润中学袁帆,一对父子的谈话,日常生活,法律就是法国的律师,爸爸,什么叫法律?,法盲就是法国的盲人,那么什么是法盲?,电视里正在播放精彩的乒乓球比赛,奶奶边看比赛边说:打得好!打得好!可惜播音员不识数,孙子听了不解地问:人家咋不识数?,奶奶说:明明是两个人在打球,他却说单打;明明是四个人在打球,他却说双打,你说他识数不识数?,可见,在交流时对名称和术语要有共同的认识才行。,一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。,例如:1、“具有中华人民共和国国籍的人,叫做中华人民共和国公民”是“”的定义;,2、“两点之间线段的长度,叫做这两点之间的距离”是“”的定义;,两点之间的距离,中华人民共和国公民,如何给名词下定义,去除与众不同的一个选项,共同点:三角形,有一个角是直角的三角形,叫做直角三角形.,特点:A、B、D有一个角是直角,如何给名词下定义,观察下列这类整式的次数和项数,找出它们的共同特征,给以名称,并作出定义。,共同点:多项式,有三项,且项的最高次数是二次的多项式叫二次三项式,特点:A、B、C有三项,且项的最高次数是二次,(A)x-2x-1(B)2x+3x+1(C)x-2xy+2y(D)4a-4ab+b,请说出下列名词的定义:无理数:钝角三角形:一次函数:,无限不循环小数叫做无理数。,有一个角是钝角的三角形叫做钝角三角形。,一般地,形如ykxb(k、b都是常数且k0)叫做一次函数。,观察下面四组图形,找出每一组图形的共同特征,并对类似于这样的图形下一个定义。,如:一个图形由另一个图形改变而来,在改变的过程中保持形状不变(大小可以改变)这个图形和原图形叫做相似图形,县官判案,b,你认为线段a与线段b哪个比较长?,线段a比线段b长。,线段b比线段a长。,线段a与线段b一样长。,判断,一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。,(1)鸟是动物.,(2)动物是鸟.,(3)画一个角等于已知角.,(4)两直线平行,同位角相等.,(6)若某数的平方是4,求该数.,(7)对顶角相等.,作出了判断,作出了判断,没有作判断,作出了判断,作出了判断,没有作判断,没有作判断,(5)ABC是等边三角形吗?,2)两条直线相交,有且只有一个交点(),4)一个平角的度数是180度(),6)取线段AB的中点C;(),1)长度相等的两条线段是相等的线段吗?(),7)画两条相等的线段(),判断下列语句是不是命题?是用“”,不是用“表示。,3)不相等的两个角不是对顶角(),5)相等的两个角是对顶角(),判断一个句子是不是命题的关键是什么?,是否作出判断,与判断的正确与否没有关系,命题的结构,两直线平行,同位角相等.,如果两直线平行,那么同位角相等.,条件(题设),结论,两条直线相交,它们只有一个交点,指出下列命题的题设和结论,1=2,2=3,1=3,两条平行线被第三条直线所截,内错角相等,两条直线被第三条直线所截,同旁内角互补,这两条直线平行,指出下列命题的条件和结论,并改写成“如果那么”的形式:同位角相等,两直线平行;三条边对应相等的两个三角形全等;,如果同位角相等,那么两直线平行。,条件是:结论是:改写成:,条件是:结论是:改写成:,同位角相等,两直线平行,例,如果两个三角形有三条边对应相等,那么这两个三角形全等。,这两个三角形全等,两个三角形的三条边对应相等,(3)在同一个三角形中,等角对等边;(4)对顶角相等。,如果在同一个三角形中,有两个角相等,那么这两个角所对的边也相等。,如果两个角是对顶角,那么这两个角相等。,条件是:结论是:改写成:,条件是:结论是:改写成:,同一个三角形中的两个角相等,这两个角所对的两条边相等,两个角是对顶角,这两个角相等,指出下列命题的条件和结论,并改写“如果那么”的形式:两条边和它们的夹角对应相等的两个三角形全等;直角三角形两个锐角互余。,如果两个三角形有两条边和它们的夹角对应相等,那么这两个三角形全等。,如果两个角是一个直角三角形的两个锐角,那么这两个角互余。,全班分为男女两组,每个小组说出三个命题,另一组把它改写“如果那么”的形式。看哪一组表现较好。,本节课你学到什么?,1、定义一般地,能清楚地规定某一名称或术语的意义的句子叫做名称或术语的定义,2、命题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论