整式乘除与因式分解_第1页
整式乘除与因式分解_第2页
整式乘除与因式分解_第3页
整式乘除与因式分解_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 4 整式乘除与因式分解 本资料为 WoRD 文档,请点击下载地址下载全文下载地址文 章来源 m 第十五章整式乘除与因式分解 一回顾知识点 1、主要知识回顾: 幂的运算性质: aman am n( m、 n 为正整数) 同底数幂相乘,底数不变,指数相加 amn( m、 n 为正整数) 幂的乘方,底数不变,指数相乘 ( n 为正整数) 积的乘方等于各因式乘方的积 am n( a0 , m、 n 都是正整数,且 m n) 同底数幂相除,底数不变,指数相减 零指数幂的概念: a0 1( a 0) 任何一个不等于零的数的零指数幂都等于 l 负指数幂的概念: a p( a0 , p 是正整数) 任何一个不等于零的数的 p( p 是正整数)指数幂,等于这个数的 p 指数幂的倒数 2 / 4 也可表示为:( m0 , n0 , p 为正整数) 单项式的乘法法则: 单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 单项式与多项式的乘法法则: 单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加 多项式与多项式的乘法法则: 多 项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加 单项式的除法法则: 单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式 多项式除以单项式的法则: 多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加 2、乘法公式: 平方差公式:( a b)( a b) a2 b2 文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差 3 / 4 完全平方公式:( a b) 2 a2 2ab b2 ( a b) 2 a2 2ab b2 文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的 2 倍 3、因式分解: 因式分解的定义 把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解 掌握其定义应注意以下几点: ( 1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可; ( 2)因式分解必须是恒等变形; ( 3)因式分解必须分解到每个因式都不能分解为止 弄清因式分解与整式乘法的内在的关系 因式 分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式 二、熟练掌握因式分解的常用方法 1、提公因式法 ( 1)掌握提公因式法的概念; ( 2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分: 系数一各项系数的最大公约数; 字母 各项含有的相同字母; 指数 相同字母的最低次4 / 4 数; ( 3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项 ( 4)注意点: 提取公因式后各因式应该是最简形式,即分解到 “ 底 ” ; 如果多项式的第一项的系数是负的,一般要提出 “ ” 号,使括号内的第一项的系数是正的 2、公式法 运用公式法分解因式的实质是把整式中的乘法公式反过来使用; 常用的公式: 平方差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论