




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年秋六年级数学上册1.5公因数与最大公因数教案沪教版五四制课 题1.5公因数和最大公因数设计依据(注:只在开始新章节教学课必填)教材章节分析:学生学情分析:课 型新授课教学目标1通过解决实际问题的活动,进一步理解公因数,最大公因数和素因数的意义,掌握求两个数的公因数,最大公因数的基本方法。2经历对问题的分析,观察,找规律,讨论的过程,进一步加深对公因数,最大公因数和素因数意义的理解,体会选择适当方法解决问题的优化思想,锻炼分析问题和解决问题的能力。3在积极思考、积极参与讨论的活动中,自觉改进学习,促进良好学习习惯的养成和沟通、交流能力的提高。重 点理解公因数,最大公因数和素因数的意义,并会求两个数的公因数,最大公因数,知道互素和素数有什么区别.难 点理解公因数,最大公因数和素因数的意义,并会求两个数的公因数,最大公因数,知道互素和素数有什么区别.教 学准 备学生活动形式教学过程设计意图课题引入: 一、 情景引入练习:请大家拿出练习本,分别写出 6 的因数, 8 的因数 6 的因数: 1 、 2 、 3 、 6 8 的因数: 1 、 2 、 4 、 8 教师:太好了,我们已经学会找一个数的因数。那么请你们仔细看一看, 它们的公有的因数是什么?学生不难答出6 和 8 的公有的因数是1和2猜想:这样老师就可以让学生猜想几个数的公因数的定义:几个数共有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数 二、学习新课问题的提出:植树节这天,老师带领24名女生和32名男生到植物园种树,老师把这些学生分成人数相等的若干个小组,每个小组的男生人数都相等,请问,这56名同学最多分成几组?问题的分析:124和32的因数是多少?224和32的公因数是多少?324和32的最大公因数是多少?问题的答案:24的因数有:1,2,3,4,6,8,12,2432的因数有:1,2,4,8,16,32 24和32的公因数是1,2,4,824和32的最大公因数是8问题的引伸:因此老师最多可以把这些学生分成8组,每组中分别有3名女生和4名男生例题1 求8和9的所有公因数,并求它们的最大公因数解:8的因数有1,2,4,89的因数有1,3,98和9只有公因数1,因此8和9的最大公因数是1如果两个整数只有公因数1,那么称这两个数互素例题1中的8和9就是互素的例题2 8和12各有哪些因数,它们公有的因数是哪几个?最大的公有的因数是多少?学生口答教师板书:8的因数有1,2,4,812的因数有1,2,3,4,6,128和12公有的因数有1,2,48和12的最大的公有的因数有4教师:下面用图表示(几何画板演示)教师:第二幅中阴影部分表示什么?(8和12公有的因数,4是最大的。) 再次强调:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做这几个数的最大公因数例题3 求18和30的最大公因数解法1 18的因数有1,2,3,6,9,1830的因数有1,2,3,5,6,10,15,3018和30的公因数有1,2,3,6最大的公因数是6拓展 以上的例题3有没有更快捷的方法呢? 解法2:把18和30分别分解素因数18=23330=235可以看出,18和30全部共有的素因数是2和3,因此2和3的乘积6就是18和30的最大公因数 求几个整数的最大公因数,只要把它们所有的素因数连乘,所得的积就是它们的最大公因数 解法3 为了简便,也可以用短除法计算18和30的最大公因数是23=6例题4 求48和60的最大公因数解:48和60的最大公约数是223=12三、巩固练习1口答填空:12的因数是( );18的因数是( );12和18的公因数是( );12和18的最大公因数是( ) 2把15和18的因数、公因数分别填在下面的圈里,再找出它们的最大公因数请找出下面各组数的公因数:5和7 8和9 1和12 9和15 7和9 16和20答案:学生口答后老师在每组后面标出公因数。5和7(1) 8和9(1) 1和12(1)9和15(1,3) 7和9(1) 16和20(1,2,4)3快速回答:24的因数是( );36的因数是( );54的因数是( );24,36和54的公因数是( );24,36和54的最大公因数是( ) 四、找规律观察: (1)3和5的最大公因数是 ;(2)18和36的最大公因数是 ;(3)6和7的最大公因数是 ;(4)8和15的最大公因数是 通过求这四组数中的最大公因数,你发现了什么规律? 规律:两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数,如果两个数互素,那么它们的最大公因数就是1 五、布置作业 1 . 练习1.5 1,2,32 . 复习所学的知识3 . 预习新课知识呈现: 1、几个数共有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数 2、如果两个整数只有公因数1,那么称这两个数互素。3、求几个整数的最大公因数,只要把它们所有的素因数连乘,所得的积就是它们的最大公因数 4、规律:两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数,如果两个数互素,那么它们的最大公因数就是1 。课堂小结: 1、几个数共有的因数,叫做这几个数的公因数,其中最大的一个数叫做这几个数的最大公因数 2、如果两个整数只有公因数1,那么称这两个数互素。3、求几个整数的最大公因数,只要把它们所有的素因数连乘,所得的积就是它们的最大公因数 4、规律:两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数,如果两个数互素,那么它们的最大公因数就是1 。课外作业练习册预习要求预习新课1.6教学后记与反思1、课堂时间消耗:教师活动 分钟;学生活动 分钟)2、本课时实际教学效果自评(满分10分): 分3、本课成功与不足及其改进措施:附送:2019年秋六年级数学上册2.2分数的基本性质1教案1沪教版五四制课 题2.2(1)分数的基本性质设计依据(注:只在开始新章节教学课必填)教材章节分析:分数的基本性质是以除法商不变的性质作为认知基础的,同时分数的基本性质又是指导今后学习约分和通分等知识的理论依据学生学情分析:课 型新授课教学目标1、理解和掌握分数的基本性质;2、通过动手动脑培养学生由具体到抽象的概括能力。重 点掌握分数的基本性质及用分数的基本性质进行简单的计算难 点掌握分数的基本性质及用分数的基本性质进行简单的计算教 学准 备学生活动形式教学过程设计意图课题引入:大家一起动手做一做.请所有同学们将你们手中的白纸象老师这样同向对折再对折,将白纸四等分。并用你们的铅笔把折痕画出,并把前三条涂成蓝色。 知识呈现: 1、思考问题请四组同学各选出一名代表将做好的纸交给老师。教师在前面展示四张纸,并提出问题:“四组同学用同样的纸折成不同等分的图案,(1)第一组蓝色部分占整张纸的几分之几?(2)第二组蓝色部分占整张纸的几分之几?(3)第三组蓝色部分占整张纸的几分之几?(4)第四组蓝色部分占整张纸的几分之几?(5)这四组同学蓝色部分的大小是否相同呢?(6)我们从中能发现什么结论呢?这些分数的大小是相等的,即=2、寻找规律分子分母同时乘以几可得分数?分子分母同时乘以几可得分数?分子分母同时乘以几可得分数?请同学们分小组讨论、分子分母同时进行怎样的运算可得分数,它们的分子和分母是按照什么规律变化的。3、深入思考(1)分别将每一个图形中的涂色部分用分数表示,这些分数有什么关系?(2)在空白处填入适当的数:=4、总结概括通过提问引导学生概括出分数的基本性质:引导学生讨论:分子和分母同时乘或除以相同的数时,为什么零要除外?分数的基本性质分数的分子和分母都乘以或都除以同一个不为零的数,所得的分数与原分数相等。即:5、例题讲解例1、试举出三个与分数相等的分数。例2、把和分别化成分母是15且与原分数大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 德州十中住宿班考试题及答案
- 天然药物学实操考试题及答案
- 期末数量关系专项测试卷(含答案) 五年级数学上册(人教版)
- 2025年公需科目人工智能与健康考试题(附答案)
- 2025年高校教师岗前培训高等教育心理学知识竞赛考试题库及参考答案
- 2025年高速监测员面试题及答案
- 2025年高级钳工试题题库及答案
- 读章程及运行管理办法
- 计量标签化管理办法
- 苏州青青菜管理办法
- DZ∕T 0227-2010 地质岩心钻探规程(正式版)
- 08水平四 七年级 田径单元18课时计划-《田径快速起动加速跑》教案
- 农贸市场消防整改报告
- (高清版)DZT 0337-2020 矿产地质勘查规范 油砂
- 【培训课件】5S培训课程讲义
- 2000-2015年考研英语一真题及详细解析
- 2021年10月自考健康教育与健康促进试题及答案
- 假性软骨发育不全综合征介绍演示培训课件
- 保险行业纳税筹划案例分析
- 私立民办高中学校项目建议书
- 比亚迪汽车发展史
评论
0/150
提交评论