已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
文数课标版,第三节圆的方程,1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.,教材研读,2.确定一个圆最基本的要素是圆心和半径.,3.圆的标准方程(x-a)2+(y-b)2=r2(r0),其中(a,b)为圆心,r为半径.,5.确定圆的方程的方法和步骤确定圆的方程的主要方法是待定系数法,大致步骤如下:(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r或D,E,F的方程组;(3)解出a,b,r或D,E,F,代入标准方程或一般方程.,6.点与圆的位置关系点与圆的位置关系有三种:(圆的标准方程为(x-a)2+(y-b)2=r2,点为(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2r2;(3)点在圆内:(x0-a)2+(y0-b)20.()(3)方程x2+2ax+y2=0一定表示圆.()(4)(x-2)2+(y+1)2=a2(a0)表示以(2,1)为圆心,a为半径的圆.()(5)圆x2+2x+y2+y=0的圆心是.()(6)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则+Dx0+Ey0+F0.(),1.圆心坐标为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案D由题意得圆的半径为,故该圆的方程为(x-1)2+(y-1)2=2,故选D.,2.圆x2+y2-4x+6y=0的圆心坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)答案D圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3).,3.点(2a,a-1)在圆x2+(y-1)2=5的内部,则a的取值范围是()A.-1a1B.0a1C.-1aD.-a1答案D由(2a)2+(a-2)25得-a0,即3a2+4a-40,所以-20),则解得D=-4,E=-2,F=-5,所求圆的方程为x2+y2-4x-2y-5=0.,考点二与圆有关的最值问题典例2(1)已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则PAB面积的最大值与最小值分别是()A.2,(4-)B.(4+),(4-)C.,4-D.(+2),(-2),(2)若实数x,y满足方程x2+y2-4x+1=0,则的最大值为,最小值为.答案(1)B(2);-解析(1)由题意知|AB|=,lAB:2x-y+2=0,由题易知圆心坐标为(1,0),圆心到直线lAB的距离d=.SPAB的最大值为=(4+),SPAB的最小值为=(4-).,(2)原方程可化为(x-2)2+y2=3.=,表示点P(-1,0)与圆(x-2)2+y2=3上的点(x,y)的连线的斜率.如图.由图知的最大值和最小值分别是过P与圆相切的直线PA、PB的斜,率.易知|PB|=|PA|=,kPA=,kPB=-=-=-,的最大值为,最小值为-.,方法技巧1.与圆的几何性质有关的最值(1)记O为圆心,圆外一点A到圆上距离的最小值为|AO|-r,最大值为|AO|+r;(2)过圆内一点的弦最长的为圆的直径,最短的为以该点为中点的弦;(3)记圆心到直线的距离为d,若直线与圆相离,则圆上点到直线的最大距离为d+r,最小距离为d-r;(4)过两定点的所有圆中,面积最小的是以这两个定点为直径端点的圆.,2.与圆上点(x,y)有关的最值(1)形如形式的最值问题,可转化为动直线斜率的最值问题;(2)形如t=ax+by形式的最值问题,可转化为动直线截距的最值问题,也可用三角代换求解;(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点到定点距离的平方的最值问题.,变式2-1在本例(2)的条件下,求y-x的最大值和最小值.解析y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时=,解得b=-2.所以y-x的最大值为-2+,最小值为-2-.,变式2-2在本例(2)的条件下,求x2+y2的最大值和最小值.解析x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,过原点和圆心的直线与圆有两个交点,在两个交点处取得最大值和最小值.又圆心到原点的距离为=2.所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.,考点三与圆有关的轨迹问题典例3已知A(2,0)为圆x2+y2=4上一定点,B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程(P与A不重合);(2)若PBQ=90,求线段PQ中点的轨迹方程.解析(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1(x2).(2)设PQ的中点为N(x,y),在RtPBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ONPQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.方法技巧求与圆有关的轨迹问题时,根据题设条件的不同采用以下方法:(1)直接法:直接根据题设给定的条件列出方程;(2)定义法:根据圆的定义列方程;(3)几何法:利用圆的几何性质列方程;(4)代入法:找出要求的点与已知点的关系,代入已知点满足的关系式.,3-1已知定点M(-3,4),动点N在圆x2+y2=4上运动,点O是坐标原点,以OM、ON为边作平行四边形MONP,求动点P的轨迹.解析四边形MONP为平行四边形,=+.设点P(x,y),点N(x0,y0),则=-=(x,y)-(-3,4)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年东营科技职业学院单招职业倾向性考试必刷测试卷带答案解析
- 2026年山东铝业职业学院单招职业倾向性测试必刷测试卷带答案解析
- 2026年云南交通职业技术学院单招职业倾向性测试题库及答案解析(夺冠系列)
- 2026年信阳涉外职业技术学院单招职业适应性考试必刷测试卷及答案解析(夺冠系列)
- 地形地貌与灾害风险评估
- 房屋布置解压协议书
- 房屋承让协议书模板
- 房屋拆除新建协议书
- 房屋收回结清协议书
- 房屋流转使用协议书
- 余华《活着》读书分享PPT
- IABP在危重冠心病患者PCI术中应用
- GB/T 29472-2012移动实验室安全管理规范
- GB/T 13542.1-2009电气绝缘用薄膜第1部分:定义和一般要求
- GB/T 11344-2021无损检测超声测厚
- 汽车电子商务综述
- 人力资源部门经理竞聘演讲课件
- 汽车维修增项服务认知讲解课件
- 安全文明施工措施费清单五篇
- 交管12123驾驶证学法减分题库
- 2022年杭州萧山城市交通开发有限公司招聘笔试题库及答案解析
评论
0/150
提交评论