领从蹄鼓式制动器的设计.doc

HFJ1020A驱动桥(包含制动器)的设计【8张CAD图纸和毕业论文】【汽车专业】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共27页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:288648    类型:共享资源    大小:2.80MB    格式:RAR    上传时间:2014-06-06 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
hfj1020a 驱动 包含 包括 包孕 蕴含 制动器 设计
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763


目  录


摘要I

AbstractII

第1章 绪论1

1.1 概述1

1.2 驱动桥现状2

   1.3 设计的主要内容.......................................................................................................3

第2章 总体方案论证5

2.1 非断开式驱动桥5

2.2 断开式驱动桥6

2.3 多桥驱动的布置6

2.4 本章小结7

第3章 主减速器设计8

3.1 主减速器结构方案分析8

3.1.1准双曲面齿轮传动8

3.1.2 结构形式9

3.2 主减速器主、从动锥齿轮的支承方案10

3.2.1 主动锥齿轮的支承10

3.2.2 从动锥齿轮的支承10

3.3 主减速器锥齿轮设计10

3.3.1 主减速比i的确定11

3.3.2 主减速器锥齿轮的主要参数选择13

3.4 主减速器锥齿轮的材料15

3.5 主减速器锥齿轮的强度计算16

3.5.1 单位齿长圆周力16

3.5.2 齿轮弯曲强度16

3.5.3 轮齿接触强度17

3.6 主减速器锥齿轮轴承的设计计算17

3.6.1 锥齿轮齿面上的作用力17

3.6.2 锥齿轮轴承的载荷18

3.6.3 锥齿轮轴承型号的确定20

3.7 本章小结21

第4章 差速器设计22

4.1 差速器结构形式选择22

4.2 普通锥齿轮式差速器齿轮设计22

4.3 差速器齿轮的材料24

4.4 普通锥齿轮式差速器齿轮强度计算25

4.5 本章小结25

第5章 半轴的设计26

5.1 半轴的型式26

5.2 半轴的设计与计算27

5.3 半轴的结构设计及材料与热处理30

5.4 本章小结31

第6章 驱动桥壳设计32

6.1 桥壳的结构型式32

6.2 桥壳的受力分析及强度计算33

6.3 本章小结34

第7章 制动器设计35

7.1鼓式制动器的结构型式及选择35

7.2同步附着系数的分析36

7.3制动器制动力矩的确定37

7.4制动器因数计算37

7.5鼓式制动器的结构参数与摩擦系数38

7.5.1 鼓式制动器的结构参数38

7.5.2 摩擦片摩擦系数41

7.6制动器零部件的强度校核42

7.6.1凸轮轴强度校核42

7.6.2铆钉剪切强度校核42

7.6.3支撑销剪切应力计算43

7.6.4回位弹簧强度的校核44

7.7制动器主要结构元件.........................................................................................................45

7.7.1制动鼓...........................................................................................................................45

7.7.2制动蹄...........................................................................................................45

7.7.3摩擦片...........................................................................................................45

       7.7.4制动底板......................................................................................................46

7.7.5支撑...........................................................................................................46

      7.7.6制动轮缸......................................................................................................................46

7.8本章小结...........................................................................................................46

结论47

参考文献48

致谢50

附录................................................. ..................51

第1章 绪  论


1.1 概述

   本课题是对驱动桥的结构设计。故本说明书将以“驱动桥(含制动器)设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。

   驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。

   汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。

   课题所设计的哈飞民意微型车最高车速100km/h,发动机标定功率(5000r/min)35.5kW,最大扭矩(3000~3500r/min)74 Nm。

   它有以下两大难题,一是将发动机输出扭矩通过万向传动轴将动力传递到后轮子上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。

   本课题的设计思路可分为以下几点:首先选择初始方案,哈飞民意属于微型车,采用后桥驱动,所以设计的驱动桥结构需要符合微型车的结构要求;接着选择各部件的结构形式;最后选择各部件的具体参数,设计出各主要尺寸。

   所设计的微型车驱动桥制造工艺性好、外形美观,工作更稳定、可靠。该驱动桥设计大大降低了制造成本,同时驱动桥使用维护成本也降低了。驱动桥结构符合微型车的整体结构要求。设计的产品达到了结构简单,修理、保养方便;机件工艺性好,制造容易的要求。

   目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果你的变速器出了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是做在一起的。所以后轮驱动必然会使得乘车更加安全、舒适,从而带来可观的经济效益。

1.2驱动桥现状

   为适应不断完善社会主义市场经济体制的要求以及加入世贸组织后国内外汽车产业发展的新形势,推进汽车产业结构调整和升级,全面提高汽车产业国际竞争力,满足消费者对汽车产品日益增长的需求,促进汽车产业健康发展,特制定汽车产业发展政策。通过该政策的实施,使我国汽车产业在2010年前发展成为国民经济的支柱产业,为实现全面建设小康社会的目标做出更大的贡献。政府职能部门依据行政法规和技术规范的强制性要求,对汽车、农用运输车(低速载货车及三轮汽车,下同)、摩托车和零部件生产企业及其产品实施管理,规范各类经济主体在汽车产业领域的市场行为。低速载货汽车,在汽车发展趋势中,有着很好的发展前途。生产出质量好,操作简便,价格便宜的低速载货汽车将适合大多数消费者的要求。在国家积极投入和支持发展汽车产业的同时,能研制出适合中国国情,包括道路条件和经济条件的车辆,将大大推动汽车产业的发展和社会经济的提高。

在新政策《汽车产业发展政策》中,在2010年前,我国就要成为世界主要汽车制造国,汽车产品满足国内市场大部分需求并批量进入国际市场;2010年,汽车生产企业要形成若干驰名的汽车、摩托车和零部件产品品牌;通过市场竞争形成几家具有国际竞争力的大型汽车企业集团,力争到2010年跨入世界500强企业之列,等等。同时,在这个新的汽车产业政策描绘的蓝图中,还包含许多涉及产业素质提高和市场环境改善的综合目标,着实令人鼓舞。然而,不可否认的是,国内汽车产业的现状离产业政策的目标还有相当的距离。自1994年《汽车工业产业政策》颁布并执行以来,国内汽车产业结构有了显著变化,企业规模效益有了明显改善,产业集中度有了一定程度提高。但是,长期以来困扰中国汽车产业发展的散、乱和低水平重复建设问题,还没有从根本上得到解决。多数企业家预计,在新的汽车产业政策的鼓励下,将会有越来越多的汽车生产企业按照市场规律组成企业联盟,实现优势互补和资源共享。

汽车行业的飞速发展,带动了整个国内汽车零部件企业的向前推进。

 (1)由于整车的市场集中度增加,目前国内车桥行业趋向于技术上强强联手,共谋发展。

 (2)由于近几年国家对汽车零部件行业出台相应的政策,以扶植其向正轨,所以整体看来车桥行业布局已大体完成。

 (3)大吨位、多轴化、大马力节能、环保、舒适等方面发展的趋势,要求车桥要轻量化、大转矩、低噪声宽速比、寿命长和低生产成本。

 (4)零部件企业与整机企业同步设计、开发、系统集成、模块化供货。

综上,随着国内公路建设水平的不断提高,车桥总成向传动效率高的单级减速方向发展。单级驱动桥结构简单,机械传动效率高,易损件少,可靠性高。由于单级桥传动链减少,摩擦阻力小,比双级桥省油,噪声也小。过去,单级桥因为桥包尺寸大,离地间隙小,导致通过性较差,应用范围相对较小,但是现在公路状况已经得到了显著改善,汽车使用条件对通过性的要求降低。这种情况下,单级桥的劣势得以忽略,而其优势不断突出,所以在设计制造中的应用范围肯定越来越广。

目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果你的变速器出了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是做在一起的。所以后轮驱动必然会使得乘车更加安全、舒适,从而带来可观的经济效益

在本次设计中努力做到符合驱动桥的基本要求,使工作平稳、结构简单、维修方便、传动效率高,满足达到最佳的动力性和燃料经济性,适应时代要求,顺利完成设计。

1.3设计主要内容

  本设计设计的是HFJ1020A驱动桥(包含制动器)的设计,本设计主要研究的内容有主减速器设计、差速器设计、车轮传动设计、轿壳设计、制动器总成设计主减速器设计、差速器设计、车轮传动设计、轿壳设计、制动器总成设计。主要解决的问题:方的案选择,驱动桥的形式,齿轮的计算及校核,制动器的设计计算。

    设计参数:

整备质量Kg:940Kg

总质量Kg:1560

最大功率(kw/rpm): 35.5/5000

最大扭矩(Nm/rpm): 74/3000~3500

轮胎类型与规格: 165/70R13C

最高车速(km/h): 100


第2章 总体方案论证


   驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。                                驱动桥设计应当满足如下基本要求:1.所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。2.外形尺寸要小,保证有必要的离地间隙。3.齿轮及其它传动件工作平稳,噪声小。4.在各种转速和载荷下具有高的传动效率。5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。7.结构简单,加工工艺性好,制造容易,拆装,调整方便。驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。

2.1 非断开式驱动桥

   普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。

驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽


内容简介:
摘 要:随着生活水平的提高和科技的迅猛发展,人们的生活节奏变得越来越快,因此人们对交通工具的快捷性要求越来越高。为了应对高车速对人们安全构成的威胁,许多法规对汽车的安全性提出了更高的要求,制动系的设计成为其中很重的一个方面。本设计根据制动器的工作原理,对多种制动器进行分析比较,选择了制动效能较高的鼓式制动器作为设计的对象。依据给定的参数,进行重要数值的计算。随后,又根据工艺学的知识,进行制动器零件的设计和工艺分析。总之,本设计的目的是为了设计出高效、稳定的制动器,以提高汽车的安全性。关键词: 制动系; 制动效能; 制动器 AbstractKeywords: Braking system ; Braking quality ; Brake1 绪论1.1 汽车制动系概述尽可能提高车速是提高运输生产率的主要技术措施之一。但这一切必须以保证行驶安全为前提。因此,在宽阔人少的路面上汽车可以高速行驶。但在不平路面上,遇到障碍物或其它紧急情况时,应降低车速甚至停车。如果汽车不具备这一性能,提高汽车行驶速度便不可能实现。所以,需要在汽车上安装一套可以实现减速行驶或者停车的制动装置制动系统。制动系是汽车的一个重要组成部分,它直接影响汽车的行驶安全性。随着高速公路的迅速发展和汽车密度的日益增大,交通事故时有发生。因此,为保证汽车行驶安全,应提高汽车的制动性能,优化汽车制动系的结构。制动装置可分为行车制动、驻车制动、应急制动和辅助制动四种装置。其中行驶中的汽车减速至停止的制动系叫行车制动系。使已停止的汽车停驻不动的制动系称为驻车制动系。每种车都必须具备这两种制动系。应急制动系成为第二制动系,它是为了保证在行车制动系失效时仍能有效的制动。辅助制动系的作用是使汽车下坡时车速稳定的制动系。汽车制动系统是一套用来使四个车轮减速或停止的零件。当驾驶员踩下制动踏板时,制动动作开始。踏板装在顶端带销轴的杆件上。踏板的运动促使推杆移动,移向主缸或离开主缸。 主缸安装在发动机室的隔板上,主缸是一个由驾驶员通过踏板操作的液压泵。当踏板被踩下,主缸迫使有压力的制动液通过液压管路到四个车轮的每个制动器。液压管路由钢管和软管组成。它们将压力液从主缸传递到车轮制动器。盘式制动器多用于汽车的前轮,有不少车辆四个车轮都用盘式制动器。制动盘装在轮辋上、与车轮及轮胎一起转动。当驾驶员进行制动时,主缸的液体压力传递到盘式制动器。该压力推动摩擦衬片靠到制动盘上,阻止制动盘转动。图1-1汽车制动系统的基本部件1.液压助力制动器 2.主缸和防抱死装置 3.前盘式制动器 4.制动踏板 5.驻车制动杆 6.防抱死计算机 7.后盘式制动器 很多汽车都采用助力制动系统减少驾驶员在制动停车时必须加到踏板上的力。助力制动器一般有两种型式。最常见的型式是利用进气歧管的真空,作用在膜片上提供助力。另一种型式是采用泵产生液压力提供助力。 驻车制动器总成用来进行机械制动,防止停放的车辆溜车,在液压制动完全失效时实现停车。绝大部分驻车制动器用来制动两个后车轮。有些前轮驱动的车辆装有前轮驻车制功器,因为在紧急停车中绝大部分的制动功需要用在车辆的前部。驻车制动器一般用手柄或脚踏板操作。当运用驻车制动器时,驻车制动钢索机械地拉紧施加制动的秆件。驻车制动器由机械控制,不是由液压控制。 每当以很强的压力进行制动时,车轮可能完全停止转动。这叫做“车轮抱死”。这并不能帮助车辆停下来,而是使轮胎损失些与路面的摩擦接触,在路面上滑移。轮胎滑移时,车辆不再是处于控制下的停车,驾驶员处在危险之中。有经验的驾驶员知道,防止车轮抱死的对策是迅速上、下踩动制动踏板。这样间歇地对制动器提供液压力,使驾驶员在紧急制动时能控制住车辆。 现今许多新型车辆装备了防抱死制动系统(ABS)。防抱死制动系统做的工作与有经验驾驶员做的相同,只是更快、更精确些。它感受到某车轮快要抱死或滑移时,迅速中断该车轮制动器的制动压力。在车轮处的速度传感器监测车轮速度,并将信息传递给车上计算机。于是,计算机控制防抱死制动装置,输送给即将抱死的车轮的液压力发生脉动。1.2 汽车制动器的工作原理一般制动系的工作原理可用下图所示的一种简单的液压制动系示意图来说明。个以内圆面为工作表面的金属的制动鼓8固定在车轮轮毅上,随车轮一同旋转。在固定不动的制动底板11上,有两个支承销12,支承着两个弧形制动卸10的下端。制动蹄的外圆面上又装有一般是非金属的摩擦片9。制动底板上还装有液压制动轮缸6,用油管5与装在车架上的液压制动主缸4相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 制动系不工作时,制动鼓的内圆面与制动蹄摩擦片的外圆面之间保持有一定的间隙,使车轮和制动鼓可以自由旋转。 要使行驶中的汽车减速,驾驶员应跺下制动踏板l,通过推杆2和主缸活塞3,使主缸内的油液在一定压力下流人轮缸6,并通过两个轮缸活塞7推使两制动蹄10绕支承销12转动,上端向两边分开而以其摩擦片9压紧在制动鼓的内圆面上。这样,不旋转的制动卸就对旋转着的制动鼓作用一个摩擦力矩M,其方向与车轮旋转方向相反。制动鼓将该力矩传到车轮后,由于车轮与路面间有附着作用,车轮对路面作用一个向前的周绕力F,同时路面也对车轮作用一个向后的反作用力,即制动力F。制动力F由车轮经车桥和悬架传给车架及车身,迫使整个汽车减速。制动力愈大,汽车减速度也愈大。当撤开制动踏板时回位弹簧13即将制动蹄拉回原位,摩擦力矩M和制动力F消失,制动作用即行终止。 图1-2 鼓式制动器结构图1.制动踏板 2.推杆 3.主缸活塞 4.制动主缸 5.油管 6.制动轮缸 7.轮缸活塞 8.制动鼓 9.摩擦片 10.制动蹄 11.制动底板 12.支承销 13.制动体回位弹簧图中所示的制动器中,由制动鼓8、摩擦片9和制动蹄10所构成的系统产生了一个制动力矩(摩擦力矩M)以阻碍车轮转动该系统称为制动器。显然,阻碍汽车运动的制动力F不仅取决于制动力矩M,还取决于轮胎与路面间的附着条件。如果完全丧失附着,则这种制动系事实上不可能产生制动汽车的效果。不过,在讨论制动系的结构问题时,一般都假定具备良好的附着条件。1.3 设计的目的和意义毕业设计和毕业论文是本科生培养方案中的重要环节。学生通过毕业设计,综合性地运用几年内所学知识去分析、解决一个问题,在作毕业设计的过程中,所学知识得到疏理和运用,它既是一次检阅,又是一次锻炼。不少学生在作完毕业设计后,感到自己的实践动手、动笔能力得到锻炼,增强了即将跨入社会去竞争,去创造的自信心。通过大学四年的学习,从理论与实践上均有了一定程度的积累。毕业设计就是对我们以往所学的知识的综合运用与进一步的巩固加深,并对解决实际问题的能力的训练与检验,目的在于:1、 培养正确的设计思想与工作作风。2、 进一步培养制图、绘图的能力。3、 学会分析与评价汽车及其各总成的结构与性能,合理选择结构方案及其有关参数。4、 学会汽车一些主要零部件的设计与计算方法以及总体设计的一般方法,以毕业后从事汽车技术工作打下良好的基础。5、 培养独立分析、解决问题的能力。 2 制动器结构简介 汽车的制动器设计究竟采用哪一种结构方案较为合理,能够最大限度的发挥制动器的功用,首先应该从制动器设计的一般原则上谈起。2.1 鼓式制动器l-调整楔2-推杆3-制动蹄4-连接弹簧5-上回位弹簧6-弹簧座7-手制动拉杆8-下回位弹簧9-车轮制动缸l0-制动底板ll旋塞12-制动摩擦片l3-弹簧鼓式制动器总成的主要零部件有:制动鼓和轮毅总成、制动蹄总成、制动底板、液压轮缸、制动蹄回位弹簧压紧装置、调节机构和驻车制动机构。为制动车轮、制动鼓和制动蹄提供摩擦表面,制动鼓的内圆周是一加工过的制动表面。车轮通过螺母和双头螺栓安装到制动鼓轮毅上。该轮毂安放在允许车轮总成转动的车轮轴承上。各种鼓式制动器的示意图如下: 1、领从蹄式 2、双领蹄式 3、双向领从蹄式 4、双从蹄式 5、单向增力式 6、双向增力式 2.2 盘式制动器盘式制动系统的基本零件是制动盘,轮毂和制动卡钳组件。制动盘为停止车轮的转动提供摩擦表面。车轮通过双头螺栓和带突缘的螺母装到制动盘毂上。毂内有允许车轮转动的轴承。制动盘的每一面有加工过的制动表面。 液压元件和摩擦元件装在制动卡钳组件内。制动卡钳装到车辆上时,它跨骑在制动盘和轮毂的外径处。 进行制动时,靠主缸的液压力,制动卡钳内的活塞被迫外移。活塞压力通过摩擦块或制动蹄夹住制动盘。由于施加在制动盘两侧的液压力是方向相反、大小相等的,制动盘不会变形,除非制动过猛或持续加压。制动盘表面的摩擦能生成热。由于制动盘在转动。表面没有遮盖,热很容易消散到周围空气中。由于迅速冷却的特性,即使在连续地猛烈制动之后,盘式制动器比抗制动衰退的鼓式制动器工作得要好。许多车辆的前部采用盘式制动器的主要理由就是它抗制动衰退性好和停车平稳。 图2-2 盘式制动器结构图1.制动卡钳组件 2.制动盘和毂组件 3.轮毂 4.双头螺栓 5.摩擦面 6.摩擦块 2.2.1 定钳盘式制动器钳盘式制动器主要有以下几种结构型式: 图2-3 钳盘式制动器示意图 a)、d) 固定钳式 b) 滑动钳式 c) 摆动钳式 固定钳式制动器,如图(a)所示,制动盘两侧均有油缸。制动时,仅两侧油缸中的活塞驱使两侧制动块向盘面移动。这种制动器的主要优点是:(1)除活塞和制动块外无其它滑动件,易于保证钳的刚度;(2)结构及制造工艺与一般的制动轮缸相差不多,容易实现从鼓式到盘式的改型;(3)很能适应分路系统的要求;就目前汽车发展趋势来看,随着汽车性能要求的提高,固定钳结构上的缺点也日益明显。主要有以下几个方面:(1)固定钳式至少要有两个油缸分置于制动盘两侧,因而必须用跨越制动盘的内部油道或外部油管(桥管)来连通,这就使制动器的径向和轴向的尺寸都比较大,因而在车轮中布置比较困难;(2)在严酷的使用条件下,固定钳容易使制动液温度过高而汽化,从而使制动器的制动效能受到影响;(3)固定前盘式制动器为了要兼充驻车制动器,必须在主制动钳上另外附装一套供驻车制动用的辅助制动钳,或者采用盘鼓结合式制动器,其中用于驻车制动的鼓式制动器只能是双向增力式的,但这种双向增力式制动器的调整不方便。2.2.2 浮钳盘式制动器浮钳盘式制动器的制动钳一般设计成可以相对于制动盘轴向滑动。其中只在制动盘的内侧设置油缸,而外侧的制动块则附装钳体。浮动钳式制动器可分为滑动钳式(图b)和摆动钳式(图c)。与固定钳式制动器相比较,其优点主要有以下几个方面:(1).钳的外侧没有油缸,可以将制动器进一步移近轮毂。因此,在布置时较容易;(2).浮动钳没有跨越制动盘的油管或油道,减少了受热机会,且单侧油缸又位于盘的内侧,受车轮遮蔽减少而冷却条件较好等原因,所以其制动液汽化可能性较小;(3).浮动钳的同一组制动块可兼用于行车和驻车制动;(4).采用浮动钳可将油缸和活塞等紧密件减去一半,造价大为降低。这一点对大批量生产的汽车工业式十分重要的。与定钳盘式制动器相反,浮钳盘式制动器的单侧油缸结构不需要跨越制动盘的油道,故不仅轴向和径向尺寸较小,有可能布置得更接近车轮轮毂,而且制动液受热气化的机会就少。此外,浮钳盘式制动器在兼充行车和驻车制动器的情况下,不用加设驻车制动钳,只须在行车制动钳的油缸附近加装一些用以推动油缸活塞的驻车制动机械传动零件即可。2.2.3 全盘式制动器与鼓式制动器相比较,盘式制动器有如下优点:1、一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳定。2、浸水后效能降低较少,而且只须经一两次制动即可恢复正常。3、在输出制动力矩相同的情况下,尺寸和质量一般较小。4、制动盘沿厚度方向的热膨胀量极小,不会像制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏扳行程过大。5、较易实现间隙自动调整,其他保养修理作业也较简便。与鼓式制动器比较,盘式制动器有如下缺点:1、效能较低,故用于液压制动系时所需制动促动管路压力较高,一班要用伺服装置。2、兼用于驻车制动时,需要加装的驻车制动传动装置较鼓式制动器复杂,因而在后轮的应用受到限制。盘式制动器将逐步取代鼓式制动器,主要是由于盘式制动器和鼓式制动器的优缺点决定的。盘式制动器在液力助力下制动力大且稳定,在各种路面都有良好的制动表现,其制动效能远高于鼓式制动器,而且空气直接通过盘式制动盘,故盘式制动器的散热性很好。但是盘式制动器结构相对于鼓式制动器来说比较复杂,对制动钳、管路系统要求也较高,而且造价高于鼓式制动器。相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而且由于散热性不好,鼓式制动器存在热衰退现象。当然,鼓式制动器也并非一无是处,它便宜,而且符合传统设计。我们知道,高速行驶的轿车,由于频繁使用制动,制动器的摩擦将会产生大量的热,使制动器温度急剧上升,这些热如果不能很好地散出,就会大大影响制动性能,出现所谓的制动效能热衰退现象,这可不是闹着玩的,制动器直接关乎生命。仅从这一点上,您就应该理解为什么盘式制动器会逐步取代鼓式制动器了吧。目前,在中高级轿车上前后轮都已经采用盘式制动器。不过,时下我们开的大部分轿车(如夏利、富康、捷达等),采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为汽车在紧急制动时,轴荷前移,对前轮制动的要求比较大,一般来说前轮用了盘式制动器就可以了。当然,前后轮都使用盘式制动器是趋势(如VOLVO轿车)。3 制动系的设计理论基础3.1 制动力与制动力分配前、后制动器制动力分配关系将影响汽车的制动方向稳定性和附着条件的利用,是汽车制动系设计时必须考虑的问题。一般根据前、后轴制动器制动力的分配、装载情况、道路附着条件和坡度等因素,当制动器制动力足够时,汽车制动过程可能出现三种情况:前后轮同时抱死拖滑;前轮先抱死拖滑,然后后轮抱死拖滑;后轮先抱死拖滑,然后前轮抱死拖滑。如前所述,前后轮同时抱死工况可避免后轴侧滑,并保证前轮只有在最大制动强度下,才使汽车失去转向能力,这种工况道路附着条件利用较好。前轮较后轮先抱死,虽然不会发生侧滑,但是汽车丧失转向能力。在一定速度下,后轮较前轮先抱死一定时间,会造成汽车后轴侧滑。3.1.1 制动时前,后轮的地面法向反作用力图3-1制动时汽车受力情况图3-1所示为,忽略汽车的滚动阻力偶和旋转质量减速时的惯性阻力偶矩,汽车在水平路面上制动时的受力情况。因为制动时车速较低,空气阻力可忽略不计,则分别对汽车前后轮接地点取矩,整理得前、后轮的地面法向反作用力为 (3-1) (3-2) 式中:和分别为前后轮因制动形成的动载荷。如果假设汽车前后轮同时抱死,则汽车制动减速度为或 (3-3)式中:为附着系数。 将式(3-3)代入式(3-1),有 (3-4)由式(3-4)可知,制动时汽车前轮的地面法向反作用力随制动强度和质心高度增加而增大;后轮的地面法向反作用力随制动强度和质心高度增加而减小。随大轴距汽车前后轴的载荷变化量小于短轴距汽车载荷变化量。例如,某载货汽车满载在干燥混凝土水平路面上以规定踏板力实施制动时,为静载荷的90,为静载荷的38,即前轴载荷增加90,后轴载荷降低38。3.1.2 前,后制动器制动力的理想分配曲线在汽车制动系设计时,如果在不同道路附着条件下制动均能保证前、后制动器同时抱死,则此时的前、后制动器制动力和的关系曲线,被称为前、后制动器制动力的理想分配曲线,通常简称为I曲线。在任何附着吸尘的路面上前、后轮制动器同时抱死,则前、后制动器制动力必定等于各自的附着力,且前、后制动器制动力(或地面制动力)之和等于附着力,即 (3-5)将式(3-5)中的第二公式除以第三个公式,并将式(3-4)代入,有 (3-6)联立方程组(3-6),并消除变量后,将方程表示的形式,即得到前后制动器制动力的理想分配关系式为 (3-7) 图3-2 I曲线示意图 图3-3 I曲线的一种制作方法如已知汽车轴距、质心高度、总质量、质心的位置(质心至后轴的距离),就可用式(3-7)绘制前、后制动器制动力的理想分配关系曲线,简称I曲线。图3-2就是根据式(3-7)绘制的汽车在空载和满载两种工况的I曲线。根据方程组(3-6)的两个方程也可直接绘制I曲线。假设一组值(0.1,0.2,0.3,1.0),每个值代入方程组(3-6),就具有一个交点的两条直线,变化值,取得一组交点,连接这些交点就制成I曲线,见图3-3。I曲线时踏板力增长到使前、后车轮制动器同时抱死时前、后制动器制动力的理想分配曲线。前、后车轮同时抱死时,所以I曲线也是前、后车轮同时抱死时,和的关系曲线。3.2 具有固定比值的前,后轮制动器制动力与同步附着系数两轴汽车的前、后制动器制动力的比值一般为固定的常数。通常用前制动器制动力对汽车总制动器制动力之比来表明分配比例,即制动器制动力分配系数,它可表示为 (3-8)因为,所以 (3-9)整理式(3-9)得 (3-10)或表示为,即 (3-11)式(3-10)为一线性方程。它是实际前、后制动器制动力实际分配线,简称为线。线通过坐标原点,其斜率为具有固定的线与I线的交点处的附着系数,被称为同步附着系数。它表示具有固定线的汽车只能在一种路面上实现前、后轮同时抱死。同步附着系数时由汽车结构参数决定的,它是反应汽车制动性能的一个参数。同步附着系数说明,前后制动器制动力为固定比值的汽车,只能在一种路面上,即在同步附着系数的路面上才能保证前后轮同时抱死。同步附着系数也可用解析方法求出。设汽车在同步附着系数的路面上制动,此时汽车前、后轮同时抱死,将式(3-6)代入式(3-10),得 (3-12)整理后,得出 (3-13)3.3 制动器的制动力矩假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为 M=2fFoR式中,f为摩擦因数;Fo为单侧制动块对制动盘的压紧力;R为作用半径。 对于常见的具有扇形摩擦表面的衬块,若其径向宽度不很大,取R等于平均半径Rm,或有效半径Re,在实际上已经足够精确。图3-4 钳盘式制动器的作用半径计算参考图 如图3-4,平均半径为 Rm=(R1+R2)/2式中,R1和R2为摩擦衬块扇形表面的内半径和外半径。故有效半径为 Re=M/2fFo=2(R23-R13)/3(R22-R12)可见,有效半径Re即是扇形表面的面积中心至制动盘中心的距离。上式也可写成Re=4/31-R1R2/(R1+R2)2(R1+R2)/2=4/31-m/(1+m)2Rm式中,m= R1/R2因为m1,m/(1+m)2Rm,且m越小则两者差值越大。应当指出,若m过小,即扇形的径向宽度过大,衬块摩擦面上各不同半径处的滑磨速度相差太远,磨损将不均匀,因而单位压力分布均匀这一假设条件不能成立,则上述计算方法也就不适用。m值一般不应小于065。制动盘工作面的加工精度应达到下述要求:平面度允差为0012mm,表面粗糙度为Ra0.71.3m,两摩擦表面的平行度不应大于005mm,制动盘的端面圆跳动不应大于003mm。通常制动盘采用摩擦性能良好的珠光体灰铸铁制造。为保证有足够的强度和耐磨性能,其牌号不应低于HT250。3.4 利用附着系数与制动效率汽车制动减速度,其中被称为制动强度。由前述可知,若汽车在具有同步附着系数的路面上制动,汽车的前、后轮将同时达到抱死的工况,此时的制动强度。在其他路面上制动时,既不出现前轮抱死也不发生后轮抱死的制动强度必然小于地面附着系数,即。就是说,只有在的路面上,地面的附着条件才能被充分地利用。而在的路面上,因出现前轮或后轮先抱死的现象,地面附着条件未被很好地被利用。为了定量说明地面附着条件的利用程度,定义利用附着系数为,设汽车前轮刚要抱死或前、后轮同时刚要抱死时,汽车产生的减速度(或表示为),则由式(3-1)得前轮地面法向反作用力为 (3-14)前轮制动器制动力和地面制动力为 (3-15)将式(3-14)和式(3-15)代入式(3-13),则 (3-16)同理可推导出后轮利用附着系数。后轮刚要抱死时,后轮地面制动力和地面法向反作用力 (3-17) (3-18)将式(3-17)和式(3-18)代入式(3-13),则 (3-19)对于已知汽车总质量、轴距、质心位置、等结构参数,则可绘制出利用附着系数与制动强度的关系曲线图。 附着效率是制动强度和利用附着系数之比。它是也用于描述地面附着条件的利用程度,并说明实际制动力分配的合理性。根据附着效率的定义,有 (3-20) (3-21)式中;和分别时前轴和后轴的附着效率。4 制动器的设计计算4.1 原始数据与技术参数装备质量 1310kg (G1=750;G2=560)满载质量 1860Kg (G1=870;G2=990) 质心高度 空载时 616mm 满载时 580mm轴距 2513mm轮胎 195/65 R15 91V 图4-1 制动时的汽车受力图4.2 参数选择以及数据计算4.2.1 盘式制动器主要参数的确定制动盘直径D轮辋直径为1524.5=367.5mm 取367mm制动盘直径为70%79%轮辋直径 即:256.9289.93 取270mm制动盘厚度h选择通风式制动盘h=25摩擦衬块外半径R2、内半径R1根据制动盘直径可确定摩擦衬块外径R2=130考虑到R2/ R11.5,可选取R1=92mm,则R2/ R1=1.41
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:HFJ1020A驱动桥(包含制动器)的设计【8张CAD图纸和毕业论文】【汽车专业】
链接地址:https://www.renrendoc.com/p-288648.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!