




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
17.2勾股定理的逆定理,第十七章勾股定理,导入新课,讲授新课,当堂练习,课堂小结,第2课时勾股定理的逆定理的应用,1.灵活应用勾股定理及其逆定理解决实际问题.(重点)2.将实际问题转化成用勾股定理的逆定理解决的数学问题.(难点),导入新课,问题前面的学习让我们对勾股定理及其逆定理的知识有了一定的认识,你能说出它们的内容吗?,回顾与思考,a2+b2=c2(a,b为直角边,c斜边),RtABC,C是直角,勾股定理,勾股定理的逆定理,a2+b2=c2(a,b为较短边,c为最长边),RtABC,且C是直角.,(2)等腰ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是cm.,8,(1)已知ABC中,BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.,直角,A,快速填一填:,思考前面我们已经学会了用勾股定理解决生活中的很多问题,那么勾股定理的逆定理解决哪些实际问题呢?你能举举例吗?,在军事和航海上经常要确定方向和位置,从而常需要使用一些数学知识和方法,其中勾股定理的逆定理经常会被用到,这节课让我们一起来学习吧.,讲授新课,1,2,例1如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?,N,E,P,Q,R,问题1认真审题,弄清已知是什么?要解决的问题是什么?,1,2,N,E,P,Q,R,161.5=24,121.5=18,30,“远航”号的航向、两艘船的一个半小时后的航程及距离已知,如图.,问题2由于我们现在所能得到的都是线段长,要求角,由此你联想到了什么?,实质是要求出两艘船航向所成角.,勾股定理逆定理,解:根据题意得,PQ=161.5=24(海里),PR=121.5=18(海里),QR=30海里.,242+182=302,即PQ2+PR2=QR2,QPR=90.,由“远航”号沿东北方向航行可知1=45.2=45,即“海天”号沿西北方向航行.,解决实际问题的步骤:构建几何模型(从整体到局部);标注有用信息,明确已知和所求;应用数学知识求解.,【变式题】如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我沿海靠近,便立即通知在PQ上B处巡逻的103号艇注意其动向,经检测,AC=10海里,BC=8海里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?,分析:根据勾股定理的逆定可得ABC是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积公式可求PD,然后再利用勾股定理便可求CD.,解:AC=10,AB=6,BC=8,AC2=AB2+BC2,即ABC是直角三角形.设PQ与AC相交于点D,根据三角形面积公式有BCAB=ACBD,即68=10BD,解得BD=在RtBCD中,,又该船只的速度为12.8海里/时,6.412.8=0.5(小时)=30(分钟),需要30分钟进入我领海,即最早晚上10时58分进入我领海.,例2一个零件的形状如图所示,按规定这个零件中A和DBC都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗?,D,A,B,C,4,3,5,13,12,D,A,B,C,图,图,在BCD中,BCD是直角三角形,DBC是直角.因此,这个零件符合要求.,解:在ABD中,ABD是直角三角形,A是直角.,D,A,B,C,4,3,5,13,12,图,1.A、B、C三地的两两距离如图所示,A地在B地的正东方向,C在B地的什么方向?,解:BC2+AB2=52+122=169,AC2=132=169,BC2+AB2=AC2,即ABC是直角三角形,B=90.答:C在B地的正北方向,练一练,2.如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现ABDC8m,ADBC6m,AC9m,请你运用所学知识帮他检验一下挖的是否合格?,解:ABDC8m,ADBC6m,AB2BC282626436100.又AC29281,AB2BC2AC2,ABC90,该农民挖的不合格,例3如图,四边形ABCD中,B90,AB3,BC4,CD12,AD13,求四边形ABCD的面积.,解析:连接AC,把四边形分成两个三角形.先用勾股定理求出AC的长度,再利用勾股定理的逆定理判断ACD是直角三角形.,解:连接AC.,在RtABC中,在ACD中,AC2+CD2=52+122=169=AD2,ACD是直角三角形,且ACD=90.S四边形ABCD=SRtABC+SRtACD=6+30=36.,四边形问题对角线是常用的辅助线,它把四边形问题转化成两个三角形的问题.在使用勾股定理的逆定理解决问题时,它与勾股定理是“黄金搭挡”,经常配套使用.,【变式题1】如图,四边形ABCD中,ABAD,已知AD=3cm,AB=4cm,CD=12cm,BC=13cm,求四边形ABCD的面积.,解:连接BD.在RtABD中,由勾股定理得BD2=AB2+AD2,BD=5m.又CD=12cm,BC=13cm,BC2=CD2+BD2,BDC是直角三角形.S四边形ABCD=SRtBCDSRtABD=BDCDABAD=(51234)=24(cm2),C,B,A,D,【变式题2】如图,在四边形ABCD中,ACDC,ADC的面积为30cm2,DC12cm,AB3cm,BC4cm,求ABC的面积.,解:SACD=30cm2,DC12cm.AC=5cm.又ABC是直角三角形,B是直角.,例4如图,ABC中,AB=AC,D是AC边上的一点,CD=1,BC5,BD=2(1)求证:BCD是直角三角形;(2)求ABC的面积,(1)证明:CD=1,BC5,BD=2,CD2+BD2=BC2,BDC是直角三角形;(2)解:设腰长AB=AC=x,在RtADB中,AB2=AD2+BD2,x2=(x-1)2+22,解得,用到了方程的思想,1.医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东的方向.,65,当堂练习,2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中摆放方法正确的是(),A.B.C.D.,D,3.如图,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km此时,A,B两组行进的方向成直角吗?请说明理由.,解:出发2小时,A组行了122=24(km),B组行了92=18(km),又A,B两组相距30km,且有242+182=302,A,B两组行进的方向成直角,4.如图,在ABC中,AB=17,BC=16,BC边上的中线AD=15,试说明:AB=AC.,解:BC=16,AD是BC边上的中线,BD=CD=BC=8.在ABD中,AD2+BD2=152+82=172=AB2,ABD是直角三角形,即ADB=90ADC是直角三角形.在RtADC中,AB=AC.,5.在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40的方向向目标A的前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?,解:根据题意得OA=161.5=24(海里),OB=121.5=18(海里),OB2+OA2=242+182=900,AB2=302=900,OB2+OA2=AB2,AOB=90.第一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40的方向向目标A的前进,BOD=50,即第二艘搜救艇的航行方向是北偏西50度,解:设AB为3xcm,BC为4xcm,AC为5xcm,周长为36cm,即AB+BC+AC=36cm,3x+4x+5x=36,解得x=3.AB=9cm,BC=12cm,AC=15cm.AB2+BC2=AC2,ABC是直角三角形,过3秒时,BP=9-32=3(cm),BQ=12-13=9(cm),在RtPBQ中,由勾股
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高速公路收费员工作总结
- 机场防护服穿脱培训
- 2025年雅安招标采购从业人员专业技术能力考试(招标采购项目管理中级)冲刺试题及答案
- 电力储能工作总结
- 2025年度租赁合同范本汇编
- 脊柱骨科护理带教计划
- 艺术机构双减工作实施汇报
- 公司年度安全培训费用课件
- 2025员工不续签合同办理指南
- 2025年塔吊操作员聘请合同
- 《新能源技术与应用》课件
- 肾错构瘤知识课件
- 合同账户变更协议
- ICU发热与体温管理课件
- 2025-2030全球及中国老年护理服务行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 学生心理健康一生一策档案表
- 火力发电厂汽水管道设计技术规定
- 跌落机操作规程
- (高清版)DBJ33∕T 1319-2024 住宅小区供配电工程技术标准
- 中国人口研究专题报告-中国2025-2100年人口预测与政策建议
- 重庆红色之旅心得体会
评论
0/150
提交评论