




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次曲面方程的化简与分类1. 摘要对于给定的二次曲面方程,以前的方法是通过特征方程可求出它所对应的主方向.由于二次曲面的每个特征根至少对应一个主方向,也就是说二次曲面至少有一个主径面,而二次曲面的主径面又是二次曲面的对称面,因而选取主径面作为新坐标面,或者选取主方向为坐标轴方向,就成为二次曲面方程的化简方法,但本文应用“向量化”和“滤射变化”化简二次曲面方程.“向量化”在空间中的一个直角坐标系下,二次曲面方程Fx,y,z=a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23xz+2a14x+2a24y+2a34z+a44阐明了存在着一个由方程中各系数表出的(自由)向量b,利用自由b不仅可以使得一般二次曲面方程的化简过程“向量化”,并且能够给出在化简过程中出现有关点的位置和数量的内在几何意义.“滤射变换”化简二次曲面方程,首先对二次曲面方程Fx,y,z配方变形,利用直线与二次曲面相交时参数m的几何意义,以及滤射变换的性质,得到了二次曲面方程分类与化简的一种运算简单方便的方法.根据上述方法,本文通过对二次曲面方程进行化简,化简成五类方程和17种标准形式.2.二次曲面方程的问题分析2.1二次曲面方程的化简依据二次曲面的方程化简与二次曲线一样,而对于二次曲线的化简与作图,崔萍给出了比较详细的化简过程,将一个点对某个坐标系的坐标变换为该点对另外一种坐标系下的坐标,通过一系列的转轴与移轴,用坐标变换法来化简二次曲线.因此,二次曲面方程的化简关键在于能否适当的选取坐标系,在一些二次曲面中,其对称面即坐标面,对称轴即坐标轴,坐标原点即曲面中心(或为曲面顶点).此即表明,使所选坐标系满足以上条件时,二次曲面的方程即为规范形式,分析可得,通过转轴和移轴可完成上述任务.对于中心型和非中心型二次曲面,进行不同程度的转轴和移轴,先后消去一次项和交叉项,方程即可转化为规范形式.平面上的二次方程: a11x2+a22y2+2a12xy+2a13x+2a23y+a33=02.2二次曲线方程的化简与作图首先把一个点进行行坐标平移变换:x=x+x0y=y+y0 其中,( x ,y)表示平面内点A的旧坐标,x,y表示点A的新坐标,x0,y0表示原坐标系下的原点的新坐标.坐标旋转变换:x=xcos+ysiny=xcos+ysin其中为坐标轴的旋转角.于是有,在坐标平移变换下,二次曲线方程二次项系数不变,一次项系数变为2F1x0,y0和2F2(x0,y0),常数项变为Fx0,y0.而在坐标旋转变换下,二次曲面的二次项和一次项系数分别只是原系数和旋转角度的因变量,与其他量无关,常数项保持不变.二次曲线方程的化简分为两大类:第一类:中心二次曲线方程,把新坐标系的原点移到二次曲线的中心,则得到F1x0,y0和F2(x0,y0).消去二次曲线中的一次项,常数项化为F(x0,y0).再通过旋转即可转化二次曲线方程为更简单的方程.第二类:无心二次曲面方程,转轴过后再平移,利用平面直角坐标变换.2.3常用的二次曲面方程的化简方法对于二次曲面方程的化简,常见的化简方法有通过特征方程求主径面,空间坐标变换(转轴和移轴),应用不变量等方法化简二次曲面方程,笔者所用化简方法与常见化简方法之间既存在着差异也有相似,为了方便读者更易读懂本文所用方法与常见方法之间的异同,在此列出常见特征方程法以作比较.以三个主方向建立的笛卡尔坐标系为新坐标系作坐标轴的旋转,曲面方程a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23xz+2a14x+2a24y+ 2a34z+a44=0以二次曲面的非奇主方向为新轴方向,以共轭于这个方向的主径面作为新坐标平面x=0建立坐标系,则曲面方程化为: a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23yz+2a14x+2a24y+2a34z+a44=0以x作为主方向,得到与之共轭的主径面方程:a11x+a12y+a13z+a14=0主径面方程式表x=0当且仅当a110,a12=a13=a14=0.当a23=0,则a11x2+a22y2+a33z2+2a24y+2a34z+a44=0当a230,则在yoz平面内,将y轴与z轴旋转一角度,使cot2=a22-a332a23即通过直角坐标变换:x=xy=ycos-zsinz=ycos+zsin使yz项系数化为0,从而得到: a11x2+a22y2+a33z2+2a14x+2a24y+2a34z+a44=0即可化为: a11x2+a22y2+a33z2+2a14x+2a24y +2a34z+a44=0 (1)一般情况下,将所得方程分为以下三种情况讨论:1.当a11a22a330(1)式通过配方和平移得到: a11x2+a22y2+a33z2+a44=0 (2)在a440时当a11,a22,a33同号但与,a44异号,(2)式表示椭球面;当a11,a22,a33与a44同号,(2)式表示虚椭球面;当a44与a11,a22,a33中的一个同号,(2)式表示单叶双曲面;当a44与a11,a22,a33中的两个同号,(2)式表示双叶双曲面;在a44=0时:当a11,a22,a33不同号,(2)式表示二次锥面;当a11,a22,a33同号,(2)式表示一个点;2.a11,a22,a33不妨设只有a33=0,a340时: (1)式通过配方和平移得到: a11x2+a22y2+2a34z=0 (3)若a11,a22同号,(3)式表示椭球抛物面;若a11,a22异号,(3)式表示双曲抛物面;在a34=0时:(1)式通过配方和平移得到: a11x2+a22y2+a44=0 (4)若a11,a22同号,但与a44异号,(4)式表示椭圆柱面;若a11,a22与a44同号,(4)式表示虚椭圆柱面;若a11,a22异号,a440,(4)式表示双曲柱面;若a11,a22异号,a44=0,(4)式表示相交平面;若a11,a22同号,a44=0,(4)式表示一对虚相交平面;3.a11,a22,a33中不妨假设只有a110(1)式通过配方和平移得到a11x2+2a24y2+2a34z2+a44=0再通过作绕x轴坐标变换,化为: a11x+2a242+a342y=0 (5)(5)表示抛物柱面;当a24=a34=0时,可得:a11x2+a44=0 (6)若a11与a44异号,(6)式表示一对平行面;若a11与a44同号,(6)式表示一对虚平行面;若a11=a44=0,(6)式表示一对重合平面.2.4二次曲面方程化简的新方法从代数上看,进一步的化简是显然的了,即根据i的值的情况进行“配方”.按照“配方”记新坐标变数为X,Y,Z而一次项系数暂可写为0,B2,B3.(10)这样(1)化为新坐标下的方程:1X2+2Y2+3Z2+2B2Y+2B3Z+A44=0注意上式中一次项系数所成的组0,B2,B3表示关于向量标架0;e1,e2,e3下的向量,特记为b,它关于oxyz下的表示为: b=B2e2+B3e3 它特记将oxyz旋转到特征方向上去且按上述约定进行配方之后的a4.以下即将看到,这时的坐标系与使新坐标下的方程化为标准形状的坐标系已无多大差别,不妨就称之为标准坐标系.再来确定x0,y0,z0. x0a1=y0a2+z0a3+a4=b (7)a11x0+a12y0+a13z0+a14=b1a21x0+a22y0+a23z0+a24=b2a31x0+a32y0+a33z0+a34=b3 若已知b,从方程组(7)的解集便可知应将坐标系oxyz平移到什么样的位置上,称(7)为二次曲面的定位方程组.特别的,当b=0时,上述方程组可写为:a11x+a12y+a13z+a14=0a21x+a22y+a23z+a24=0a31x+a32y+a33z+a34=0它就是通常的所谓中心方程.定理3:设 (x,y,z)是定位方程组(7)的任一个解,则量J=b+a4x,y,z+a44的值与坐标系无关.系1:当b=0时,量J=a4x,y,z+a44在所有中心处取同一个常值,得到X2+2Y2+3Z2+J=0.系2:当b0时,方程b+a4x,y,z+a44=0 与定位方程组联立的解集与坐标系无关.这时必有零根出现, I3=0,分别两种情况讨论如下:(i)若 I20,(1)成为1X2+2Y2+2B3Z+A44=0特别地,将它移到平面(7)与(1)的交点O处,我们有X2p+Yq=2Z.(ii) I2=0,(1)成为1X2+2B2Y+A44(x0,y0,z0)=0同(i)一样,特别地,将它移到平面(7)与(1)的交点O处,则上述方程中的常数项就消失了,我们有X2=2pY.方法一:向量化设在空间中的一个直角笛卡尔坐标系(一下均简称坐标系)oxyz下给定一个二次方程为a11x2+2a12xy+a22y2+2a13xz+2a23yz+a33z2+2a41x+ 2a42y+2a43z+a44=0存在着一个由二次方程中诸系数表出的(自由)向量b,利用它,可以使得一般二次方程化简程序“向量化”.在坐标变换下方程中诸系数的变化律a=ai1,ai2,ai3, i=1,2,3,4.a为半向量,易知在坐标系下作平移:x=x+x0 ,y=x+x0 ,x+x0诸半向量变化律为:a1=a1 ,a4=a4+x0a1+y0a2+z0a3此外有a44=a(x0 ,y0 ,z0),其中,我们用a(x ,y ,z)简记原二次方程左边部分.为写出在坐标系的旋转下方程中诸系数的的变化律,我们采用矩阵运算符号.二次方程成为x ,y ,zaijxyz+2x ,y ,za41a42a43+a44=0 (8)据此易知,若将坐标旋转公式写为:x ,y ,z=x ,y ,zT其中 T记相应的直角方阵,则有aij=TaijT (T记T的转置) (9)又有a41 ,a42 ,a43=a41 ,a42 ,a43T (10)这里已知直角方阵的性质T的转置等于T的逆,最后对坐标系的旋转:a44=a44由(9)(10)二式看出,在坐标系旋转下,a4如向量一样变化,而a1,a2, a3则不然,如果分别用e1,e2, e3简记 T的第一,二,三个列矢,那么据(8)式可写出ai ,( i=1,2,3)的诸分量之变化式如下:ai1 =a1 ,e1e11+a2 ,e1e12+a3 ,e1e13ai2 =a1 ,e1e21+a2 ,e1e22+a3 ,e1e23ai3 =a1 ,e1e31+a2 ,e1e32+a3 ,e1e33为了以下应用,我们将(8)式变形如下,用x ,y ,z,左乘(8)的两边,应用坐标旋转公式得:x ,y ,zaij=x ,y ,zaijT.又用T右乘上式两式得:x ,y ,zaij=x ,y ,zaijT和坐标旋转公式比较知,在坐标系的旋转下,三数组a11x ,a12y ,a13z ,a21x ,a22y ,a23z ,a31x ,a32y ,a33z如同一个向量的坐标数组一样变化.为了化简原二次方程,首要问题是去寻找这样的旋转,使得在新的坐标oxyz下有:aij=0 ,(ij)显然,这就是要寻求e1=ei1 ,ei2 , ei3 ,i=1,2,3使上式成立.记ei1 ,ei2 , ei3=xi ,yi ,zi据(8)得:a11xi+a12yi+a13zi=aiixia21xi+a22yi+a23zi=aiiyia31xi+a32yi+a33zi=aiizi如果略去下标i并令 =aii则知这些向量满足同一个方程组:a11x+a12y+a13z=aiixa21x+a22y+a23z=aii ya31x+a32y+a33z=aiiz或者(a11-)x+a12y+a13z=0a21x+(a22-)y+a23z=0a31x+a32y+(a33-)z=0上述方程组有解的充要条件为方程的系数矩阵行列式为零,即:a11-a12a13a21a22-a23a31a32a33-=0和方程组的特征方程的解,使下式成立:3+i12+i2-i3=0其中 为特征根.定理1:必存在坐标系的旋转使二次方程的二次部化为对角形(这即是主轴变换的存在性).系1:当aij=aji时,特征方程的根全是实数.系2:若0为m重根,则特征方程有m个独立解.系3:若12,则相应的特征方向必正交.结论:在任一坐标系下,主方向平面由a1 ,a2 ,a3张成:记为a1 ,a2 ,a3.定理2:在任一坐标系下纯形式表出的b=a4-(a1 ,a2 ,a3)a4代表同一个向量.设已经求出i和相应的 ei (i=1 ,2 ,3)那么施行旋转便可将方程组写成为: 1x2+2y2+3z2+2a14x+2a24y+2a34z+a44=0 从代数上看,进一步的化简是显然的了,即根据i的值的情况进行“配方”.按“配方”记新坐标变数为X,Y,Z,一次项系数暂可写为0,B2,B3.(10)这样上述方程可化为: 1X2+2Y2+3Z2+2B2Y+2B3Z+A44=0 注意该式中一次项系数所成的组0,B2,B3表示关于向量标架0;e1,e2,e3下的向量,特记为b,它关于oxyz下的表示为:b=B2e2+B3e3它特记将oxyz旋转到特征方向上去且按上述约定进行配方之后的a4.以下即将看到,这时的坐标系与使新坐标系下的方程化为标准形状的坐标系已无多大差别,不妨就称之为标准坐标系.x0a1=y0a2+z0a3+a4=b若已知b,此方程组的解集便可知应将坐标系oxyz平移到什么样的位置上,称其为二次曲面的定位方程组:a11x0+a12y0+a13z0+a14=b1a21x0+a22y0+a23z0+a24=b2a31x0+a32y0+a33z0+a34=b3特别的,当b=0时,定位方程组写为:a11x+a12y+a13z+a14=0a21x+a22y+a23z+a24=0a31x+a32y+a33z+a34=0它就是通常的所谓中心方程.定理3:设 (x,y,z)是定位方程组的任一个解,则量J=b+a4x,y,z+a44的值与坐标系无关.系1:当b=0时,量J=a4x,y,z+a44在所有中心处取同一个常值,得到X2+2Y2+3Z2+J=0.系2:当b0时,方程b+a4x,y,z+a44=0与定位方程组联立的解集与坐标系无关.这时必有零根出现, I3=0,分别两种情况讨论如下:(i)若 I20,原二次方程成为1X2+2Y2+2B3Z+A44=0特别地,将它移到平面定位方程组与二次方程的交点O处,我们有X2p+Yq=2Z.(ii) I2=0, 原二次方程成为1X2+2B2Y+A44(x0,y0,z0)=0同(i)一样,特别地,将它移到平面定位方程组与二次方程的交点O处,则上述方程中的常数项就消失了,我们有X2=2pY.方法二:滤射变换在空间直角坐标系下,由三元二次方程Fx,y,z=a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23xz+2a14x+2a24y+2a34z+a44所表示的曲面,叫做二次曲面.对于二次曲面方程的分类与化简,再次给出一种方法,通过对三元二次方程Fx,y,z=0配方变形,利用直线与二次曲面方程相交时参数t的几何意义,以及滤射变换的性质,得到了二次曲面方程化简的一种简单,比较为大多数读者接受的方法.性质一:在空间直角坐标系下,二次曲面方程经过线性滤射变换:x=a1x1+b1y1+c1z1+d1y=a2x2+b2y2+c2z2+d2z=a3x3+b3y3+c3z3+d3其中一次项对应系数行列式的值不为零.图形为同类型的二次曲面,并且原二次曲面的中心在滤射变换下仍对应于新二次曲面的中心.性质二:在空间直角坐标系下,若直线方程x=x0+rXy=y0+rYz=z0+rZ与二次曲面Fx,y,z相交,则交点所对应的参数r满足X,Y,Zr2+2F1x0,y0,z0X+F2x0,y0,z0Y+F3x0,y0,z0Zr+Fx0,y0,z0=0其中X,Y,Z=a11X2+a22Y2+a33Z2+2a12XY+2a13XZ+2a23YZF1x0,y0,z0=a11x0+a12y0+a13z0+a14F2x0,y0,z0=a12x0+a22y0+a23z0+a24F3x0,y0,z0=a13x0+a23y0+a33z0+a34对于向量=X,Y,Z,在此设定该向量为单位向量,r表示 r所对应的交点与直线上的定点x0,y0,z0之间的距离;当x0,y0,z0为两个交点的中点时,交点所对应的参数r2=-Fx0,y0,z0X,Y,Z性质三:以三个主方向建立的笛卡尔坐标系为新坐标系作坐标轴的旋转,曲面方程 Fx,y,z=a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23xz+2a14x+2a24y+2a34z+a44以二次曲面的非奇主方向为新轴方向,以共轭于这个方向的主径面作为新坐标平面.该三元二次方程所表示曲面的主径面为:XF1x,y,z+YF2x,y,z+ZF3(x,y,z)=0其中F1x,y,z=a11x+a12y+a13z+a14F2x,y,z=a21x+a22y+a23z+a24F3(x,y,z)=a31x+a32y+a33z+a34X,Y,Z是特征方程组(a11-)X+a12Y+a13Z=0a21X+a22-Y+a23Z=0a31X+a32Y+(a33-)Z=0的解,而是特征行列式a11-a12a13a21a22-a23a13a23a33-=0的解.由性质可知,三元方程Fx,y,z通过配方得Fx,y,z=a11(x+b1y+c1z+d1)2+a22y+c2z+d22+a33z+d32+k1=0.根据性质一,二次曲面的中心为方程组x+b1y+c1z+d1=0y+c2z+d2=0z+d3=0的解.由性质三,可以求出对称面的方程,设对称面的法向量=(A,B,C)次曲面的中心为Ox0,y0,z0,由此可得新坐标系的一条轴x的方程为x=x0+AXy=y0+BYz=z0+CZ而新二次曲面的三条轴可以利用新坐标轴与原二次曲面的交点和O之间的距离来确定.由性质二可知,轴x与二次曲面的交点所对应的参数r2=-Fx0,y0,z0A,B,C若r20,对应的半长轴为:x=rA2+B2+C2;若r20,当标准方程的右边是1或0,所对应的项是正项.若ri20当标准方程的右边是1或0,所对应的项是负项.由此可得到二次曲面的标准方程.例:化简二次曲面方程x2+y2+5z2-6xy-2xz+2yz-6x+6y-6z+10=0.解:通过配方法可变形为:(x-3y-z-3)2-8(y+14z+14)2+29z-12+1=0由前面可知,该二次曲面方程是双叶双曲面.解方程组:x-3y-z-3=0y+14z+14=0z-1=0可知二次曲面的中心是O(1,-1,1).解特征方程1-z-3-1-31-1-115-=0得=6,3,-2.将三个值分别代入方程组1-X-3Y-Z=0-3X+1-Y+Z=0X+Y+5-Z=0解得三个对称面的方程为:x-2y-2z=0,x-y+z-3=0,x+y=0即新坐标方程的方向向量分别为:1=1,-1,2,2=1,-1,1,3=(1,1,0)而r12=-F1,-1,11,-1,2=-190r22=-F1,-1,11,-1,1=-1360即双叶双曲面的三个半长轴分别为:a=-r12A12+B12+C12=16b=-r22A22+B22+C22=13c=-r32A32+B32+C32=12故二次曲面的标准方程为x216+y213-z212=-13.二次曲面方程的分类据以前的方法,二次曲面方程可以化简成十七种标准式Fx,y,z=a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23xz+2a14x+2a24y+2a34z+a441x2a2+y2b2+z2c2=1(椭球面)2x2a2+y2b2+z2c2=-1(虚椭球面)3x2a2+y2b2-z2c2=0(点或称虚母线二次锥面)4x2a2+y2b2-z2c2=1(单叶双曲面)5x2a2+y2b2-z2c2=-1(双叶双曲面)6x2a2+y2b2-z2c2=0(二次锥面)7x2a2+y2b2=2z(椭圆抛物面)8x2a2+y2b2=2z(双曲抛物面)9x2a2+y2b2=1(椭圆柱面)10x2a2+y2b2=-1(虚椭圆柱面)11x2a2+y2b2=0(交于一条实直线的一对共轭虚平面)12x2a2-y2b2=1(双曲柱面)13x2a2-y2b2=0(一对相交平面)14x2=2py(抛物柱面)15x2=a2(一对平行平面)16x2=-a2(一对平行的共轭虚平面)17x2=0(一对重合平面)4.评价“向量化”化简二次曲面方程,在空间中的一个直角坐标系下,二次曲面方程a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23xz+2a14x+2a24y+2a34z+a44=0上文中阐明了存在着一个由二次曲面方程中各系数表出的(自由)向量b,利用自由向量b不仅可以使得一般二次曲面方程的化简过程“向量化”,并且能够给出在化简过程中出现有关点的位置和数量的内在几何意义.“滤射变换”化简二次曲面方程,首先对二次曲面方程Fx,y,z=0配方变形,利用直线与二次曲面相交时参数m的几何意义,以及滤射变换的性质,得到了二次曲面方程分类与化简的一种运算简单方便的方法.对于二次曲面的分类与化简,空间解析几何中,一般是首先确定二次曲面的对称面,使对称面为新坐标系的坐标面,然后通过坐标系的平移、旋转,把二次曲面方程分类并化简为标准方程,或者通过不变量进行分类、化简.这些方法要么运算复杂,要么无法确定图形的具体位置,然而本文的方法操作简单,化简过程易懂,是一种比较好的化简方法.5.创新高维二次曲面下文将给出一个化简二次曲面方程的简便方法,使得化简二次曲面有了一个的创新的方法. a11x2+a22y2+a33z2+2a12xy+2a13xz+2a23xz+2a14x+2a24y+2a34z+a44=0均可化简成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025出版合同翻译协议范本
- 2025国际服务贸易合同主体的范围
- 办公电脑软硬件维护服务合同
- 生物技术农业应用合作合同书
- 纺织设计师考试内容纲要试题及答案
- 浙江国企招聘2025温州泰顺县国有企业社会招聘20人笔试参考题库附带答案详解
- 2025河南郑州空中丝路文化传媒有限公司社会招聘6人笔试参考题库附带答案详解
- 2025年福建省福州市中国冶金地质总局二局招聘8人笔试参考题库附带答案详解
- 2025安徽省科创投资有限公司社会招聘10人笔试参考题库附带答案详解
- 高效备考2024年国际商业美术设计师考试试题及答案
- 小学数学培训微讲座
- 《电子产品简介》课件
- 疑似新冠肺炎的应急演练
- 2025年湖北省武汉市高考数学模拟试卷(附答案解析)
- 赛迪顾问一线调研第36期:中国人工智能医疗器械:前路漫漫仍需披荆斩棘
- 2024秋期国家开放大学《可编程控制器应用实训》一平台在线形考(形成任务5)试题及答案
- 重庆市巴蜀学校高2025届高二(下)期末考试+化学试卷(无答案)
- 广东省广州三校2023-2024学年高二下学期期末考试+政治试卷(含答案)
- 健康照护师技能大赛刷题(四)附有答案
- 卷材防水屋面施工
- 聚乳酸纤维的可持续生产和应用
评论
0/150
提交评论