(应用化学专业论文)太湖水强化混凝脱浊中试研究.pdf_第1页
(应用化学专业论文)太湖水强化混凝脱浊中试研究.pdf_第2页
(应用化学专业论文)太湖水强化混凝脱浊中试研究.pdf_第3页
(应用化学专业论文)太湖水强化混凝脱浊中试研究.pdf_第4页
(应用化学专业论文)太湖水强化混凝脱浊中试研究.pdf_第5页
已阅读5页,还剩57页未读 继续免费阅读

(应用化学专业论文)太湖水强化混凝脱浊中试研究.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

硕士论文太湖水强化混凝脱浊中试研究 摘要 本文研究了聚合氯化铝( p a c ) 和硫酸铝( a s ) 分别与聚二甲基二烯丙基氯化铵 ( p d m ) 制得的系列p a c p d m 复合混凝剂及a s p d m 复合混凝剂强化混凝处理夏季富 营养化太湖水的脱浊效果。 根据太湖周边水厂实际工艺,安装两套完全平行的1 6 t m 水量规模中试生产线。 一条运行无机混凝剂,另一条运行p d m 复合混凝剂,通过跟踪各工艺段出水余浊,考 察了p a c 及a s 在常规处理各工艺段除浊效果及其复合药剂对太湖水强化混凝对各工艺 段除浊效果的改进,对比分析了复合混凝剂在烧杯试验与中试放大运行的结果。此外, 考察了夏季太湖水强化混凝脱浊的同时,浊度去除与c o d 及藻含量去除的联系。 研究结果表明:在中试条件下,p ! a c p d m 复合混凝剂相对于等剂量的p a c 可降低 沉淀池出水浊度3 3 3 多扣5 4 0 ;在沉淀出水余浊相近的情况下,p a c p d m 复合混凝剂 可比p a c 减少投加量2 0 o 3 7 5 ;a s p d m 复合混凝剂相对于等剂量的a s 可降低 沉淀池出水浊度4 1 6 v 5 0 6 ;在沉淀出水余浊相近的情况下,a s p d m 复合混凝剂 可比a s 减少投加量2 0 0 4 2 3 ;强化混凝脱浊果略低于烧杯实验结果,原因可能 为中试混凝条件的强度弱于烧杯实验的强度,使复合混凝剂除浊效果不能充分得到体 现。在常规给水处理工艺中,预氯氧化和消毒工艺基本没有除浊效果,混凝沉淀工艺相 对于原水除浊8 0 一9 0 ,过滤工艺相对原水除浊约4 ;复合混凝剂在强化混凝脱浊 的同时还提高了过滤效率约1 5 。利用复合混凝剂对太湖水强化混凝脱浊,在浊度去 除9 9 的情况下,藻含量去除率达到约9 8 ,c o d 去除率能达到6 6 。 复合混凝剂优越的除浊性能在混凝强度偏弱的中试运行条件下,得到了一定的体现; 混凝沉淀工艺为常规处理中最主要除浊工艺,复合混凝剂在强化混凝脱浊效果的同时, 强化了过滤除浊效果;利用复合混凝剂强化混凝夏季太湖水,在获得较好除浊效果的同 时,全面改善了出水水质。 关键词:聚合氯化铝( p a c ) ,硫酸铝( a s ) ,聚二甲基二烯丙基氯化铵( p d m ) ,复合 混凝剂,夏季,富营养化太湖水,中试生产线,除浊 a b s t r a c t 硕士论文 a b s t r a c t 1 1 l et u r b i d i 够r e m o v a le f i e c t so f 仃e a t i n gs 眦吼e re u t r o p m c a t e dt a i h l ll a l 【er a ww a t e rb y u s i n gp a c p d ms t a b l ec o m p o s i t ec o a g u l a n t so ra s p d ms t a b l ec o m p o s i t ec o a g u l a n t sw h i c h w e r ec o m p o s e db yp o l y a l u m i n 啪c 1 1 l o r i d e( p a c )晰t l lp o l y d i m e t l l y l d i a l l y l 锄m o i l i 啪 c 1 1 l o r i d e ( p d m ) a n da l u m i l l i 啪s u l f a t e ( a s ) w i lp d m ,r e s p e c t i v e l y ,w e r es t u d i e di n t h i s p a p e r a c c o r d i n gt ot h ep r a c t i c a lp r o c e s so fw a t e rp l a n t sa r o u l l dt h et a i h ul a k e ,t w op a r a l l e lp i l o t w a t e rp l a i l t sw e r ei n s t a l l e d o n er u l lu 1 1 d e rt 1 1 ec o n d i t i o no fu s i n gi n o 略a 1 1 i cc o a g u l a l l t s ,a 1 1 dt h e o 廿l e ro i l e 姗u 1 1 d e rt h ec o n d i t i o no fu s i n gc o m p o s i t ec o a g u l a n t s b ym o n i t o r i n gm er e s i d u a l 缸b i d 埘o fp r o c e s s e dw a t e ro fe a c hu i l i t ,t h e 嘶b i d i t ) rr e m o v a le 妇凫c t s o fe a c hu 1 1 i ti n c o n v e n t i o i l a lp r o c e s sw h e nu s i n gp a co fa sa i l dt h ei m p r o v e m e mo ft u r b i d i t ) rr e m o v a l e 旋c t sw h e nu s i n gp a c p d mo ra s p d mc o i n p o s i t ec o a g u l a i l t sw e r es t u d i e d b a s e do nt l l e r e s u l t s ,j a rt e s t sa i 】l dp i l o ts c a l et e s t sw e r ec o m p a r e d 趾da i l a l y s i s e d b e s i d e s ,t h er e l a t i o n s h i p b e t v 旧e nt u r b i d i 吼c o d m i ia n da l g a cc o n t e n tr e m o v me 伍c i e n c i e sw e r ea l s os t u d i e d 1 1 1 er e s u l t ss h o w e d l a tu n d e rc o n d i t i o no fp i l o ts c a l et e s t s ,3 3 3 5 4 0 t u r b i d 毋o f e m u e mc o u l db ed e s c r e 弱e db yu s i n gp a c p d mc o m p o s i t ec o a g u l a i l t sc o m p a r e dw i l l a tb y l l s i n gp a ci i lt 1 1 es 锄ed o s a g e s 2 0 0 3 7 5 d o s a g ec o u l db er e d u c e db yu s i n gp a c p d m c o m p o s i t ec o a g u l a n _ t sc o m p a r e d 、析t l lt h a tb yu s i n g 王 a cu n d e rn l ec o i l d i t i o no fc o m r o l l i n g s i l l l i l a re m u e n tt u r b i d i 何41 6 5 0 6 t i l r b i d i 够o fe m u e n tc o u 【l db ed e s c r e a s e db yu s i n g a s p d mc o i n p o s i t ec o a g l l l 锄t sc o m p a r e d 谢t l lt t 谢b yu s i n ga si i la l es 锄ed o s a g e s 2 0 o 4 2 3 d o s a g ec o u l db er e d u c e db yu s i n ga s p d mc o r n p o s i t cc o a g u l a n t sc o m p a r e d 、) l ,i t l l t l l a tb yl l s i i l ga su i m e r 坞c o n d i t i o no fc o n 臼0 1 l h 唱s i i i l i l a re m u e n tt u r b i d i 够c o m p a r e dw i m r e s u n so f j a rt c s t s ,m et u r b i d i 锣r e m o v a le f r e c t so fp i l o ts c a 王et e s t sw e r e 、e a l 【e li tm a y b ed u e t 0 l ec o a g :u l a t i o ni n t e n s i 锣o fp i l o tp l a n tw a sl o w e rt h 趾t l l a to fj a rt c s t s i i lc o i e n t i o 砌 w a t e r 慨a t m e n tp r o c e s s ,p r e c m o r i n a t i o na i l dd i s i n f e c t i o np r o c e s s e sb 乏丽l yk i dt i l r b i d 毋 r e n v a le 疵c t s ,c o a g u l a t i o n - s e d i i l l e n t a t i o np r o c e s s e s 觚df i l t r a t i o np r o c e s sc o u l dr e m o v e8 0 9 0 a n da b o u t4 t i l r b i d 时五mr a ww a t e ru i l d e rn l ec o n d i t i o no fu s i n gp a c r e s 】p e c t i v e l y 1 kt 1 1 】由i d 埘r e m o v a le 岱c i e n c yo ff i l t r l a t i o nc o u l db er a i s e d 15 w l l i l e c o m p o s i t ec o a 刚锄t sw e r eu s e d c o r n p o s i t ec o a g u l a n t sc o u l dr e m o v e6 6 c o d 锄d9 8 a l g c o n t e n t 挝l e9 9 t u r b i d i 锣、v 嬲r e m o v e d p a c p d mc o m p o s i t ec o a g u l a n t sa l l da s p d mc o i n p o s i t ec o a g u l a i l t sc o u l ds t i l l 缸l c t i o n w e uf o re i l l l a i l c i n gc o a g u l a t i o nu l l d e rt h ew e a kc o a g u l a t i o ni n t e n s i t yo ft h ep i l o tp l a n t c o 雄f i l l a t i o n - s e d i m e n t a t i o nw e r e 1 em a i nt u r b i d i t ) rr e m o v a lp r o c e s s e si nc o n v e n t i o l l a l 缸c a 缸n e n t t h et u r b i d i 够r e m o v me 任e c to ff i l t r a t i o np r o c e s sw 嬲a l s oe n h a n c e dw h e nu s i i l g c o m p o s i t ec o 雄舢l 觚t s e l l l l 砒l c e dc o a g u l a t i o np r o c e s so fs m m n e rt a i h ul a k em ww a t e rb y u s i i 培c o i n p o s i t ec o a g u l a n t s c o u l d1 1 0 t o 芏d yg e tb e t t e rt u r b i d i 锣r e m o v a le f r e c t ,b 哦a l s o i m p r o v et l l ef i i l i s h e dw a t e r 小“i t ) ,t o 伽1 y i t 硕士论文太湖水强化混凝脱浊中试研究 k e yw o r d :p o l y a l u m i n u mc l l l 耐d eo a c ) ,a l 啪i l l i 啪跚l f ;i t e ( a s ) ,p o l y d i i l l e m y l d i a - l l y l 觚皿o n i 啪出o r i d e 口d m ) ,c o m p o s i t ec o a g m a 她s 岫:1 i i l e r ,e 峋1 1 i c a t e d 1 础ml a k e 吣p i l o tp l 锄t ,t u r b i d 时r e 】m o v e 声明尸明 本学位论文是我在导师的指导下取得的研究成果,尽我所知,在 本学位论文中,除了加以标注和致谢的部分外,不包含其他人已经发 表或公布过的研究成果,也不包含我为获得任何教育机构的学位或学 历而使用过的材料。与我一同工作的同事对本学位论文做出的贡献均 已在论文中作了明确的说明。 研究生签名: 叶朋佃 学位论文使用授权声明 南京理工大学有权保存本学位论文的电子和纸质文档,可以借阅 或上网公布本学位论文的部分或全部内容,可以向有关部门或机构送 交并授权其保存、借阅或上网公布本学位论文的部分或全部内容。对 于保密论文,按保密的有关规定和程序处理。 研究生签名: 1 引肭日 硕士论文太湖水强化混凝脱浊中试研究 1 绪论 1 1 太湖水环境概况 太湖湖泊面积为2 4 2 8 k m 2 ,平均深度为1 8 6 m 。在该地区的城市供水、养殖、灌溉 和航运中,太湖起着非常重要的作用。由于环太湖大堤的修建和入湖河道的人为控制, 实际上太湖已接近封闭,湖泊的水量交换约需一年时间i l j 。同时,太湖流域水资源开发 程度很高,流域本地水资源量为1 6 2 1 0 8m 3 ( 其中河川径流量为1 3 6 7 1 0 8m 3 ) ,年均从 长江调入水量为4 5 1 0 8m 3 ,但流域2 0 0 0 年总用水量已达2 9 3 1 0 8 m 3 ,流域耗水量高达 1 0 4 1 0 8m 3 ,流域工业、生活年排放污水量为5 0 1 0 8m 3 ,污径比( 污水量与河川径流量 之比) 为1 :2 7 【2 】。在过去的2 0 多年中太湖流域经济保持高速增长,工业化水平迅速提高, 城市化速度加快,人民生活水平提高,对流域水资源进行了高度开发和利用,但在开发 利用同时,由于对水资源保护重视不够,水污染治理措施尚未跟上,大量未经处理的城 市污水直接入水体,农田化肥、农药的大量使用以及水产养殖规模的不断扩大,导致太 湖流域河湖水污染状况日趋严重。 2 0 世纪5 0 年代至8 0 年代,太湖水质较好,以i i 类为主,完全符合饮用水源地标准, 水体以中营养和轻度富营养为主。据记录,1 9 8 0 年以前,太湖很少出现大面积的蓝藻。 从2 0 世纪8 0 年代初到9 0 年代中期,因受有机污染影响,太湖水质的类别下降了1 个等级, 全湖平均由原来的以i i 类水为主变到以类水为主,、v 类污染水域不断扩大。太湖 水体营养状况上升了2 个等级,上升到目前以中度富营养为主,个别水域已达重富营养 化。1 9 8 7 年太湖水质高锰酸盐指数( c o d ) 、总磷( t p ) 、总氮( 1 如平均质量浓度分别 为3 3 0l l 彩l 、o 0 2 9m l 、1 5 4m l ,至2 0 0 0 年分别上升为5 2 8m l 、o 1 0m g l 、 2 1 4m l ,短短1 3 年间分别上升了6 0 、2 4 8 、6 5 【3 j 。由于持续的污染及部分自 然因素的影响,2 0 0 7 年太湖发生了“蓝藻危机”:无锡市两个水源地一度受到太湖蓝藻严 重污染,水质变腥变臭,丧失饮用水功能,影响到1 0 0 多万市民饮水;另一方面,有机 污染物对水中胶体颗粒产生很强的保护作用,给以去除浊度为主要目标的常规水处理带 来了极大困难,水源的污染对饮用水常规处理工艺提出了严峻的挑战,威胁着城市供水 的水质安全。 1 2 饮用水水质标准 1 2 1 我国饮用水水质标准发展状况 由于水与人类健康密切相关,因此,饮水的每个环节其安全质量要素都必须严格控 l 绪论硕士论文 制。1 9 5 5 年卫生部发布实施自来水水质标准暂行标准,在北京、天津、上海、旅顺 ( 大连) 等1 2 个城市试行,这是新中国成立后最早的一部管理生活饮用水的技术法规; 1 9 5 6 年由国家建设委员会和卫生部发布实施饮用水水质标准,共1 5 项指标;1 9 5 9 年 由建筑工程部和卫生部发布实施生活饮用水卫生规范是对饮用水水质标准和集 中式生活饮用水水源选择及水质评价暂行规则进行修订,并将其合并而成的,共1 7 项 指标;1 9 7 6 年国家卫生部组织制定了我国第一个国家饮用水标准,共有2 3 项指标,定 名为生活饮用水卫生标准( 编号为t j2 0 一7 6 ) ;经国家基本建设委员会和卫生部联合 批准,1 9 8 5 年卫生部对生活饮用水卫生标准进行了修订,指标增加至3 5 项,编号 改为g b 5 7 4 9 1 9 8 5 ,于1 9 8 6 年1 0 月起在全国实施【4 】。2 0 0 1 年6 月,卫生部颁布了生活 饮用水水质卫生规范( 2 0 0 1 ) ,建设部也于2 0 0 5 年6 月颁布实施城市供水水质标准 ( c j 厂r 2 0 6 2 0 0 5 ) ,2 0 0 7 年7 月1 日,由国家标准委和卫生部联合发布了生活饮用水卫生 标准( g b5 7 4 9 2 0 0 6 ) 强制性国家标准。该规范规定了3 4 项常规检验项目,6 2 项非常规 检验【5 1 。 我国的饮用水水质标准经过五十多年的发展,在检测项目的修订以和限值上获得了 很大的进步。水质检测项目的数量从1 9 5 6 年的1 5 项指标发展到目前的1 0 6 项指标;部分 指标的限值逐渐严格;指标分类更为合理,将水质检测项目分为常规检验项目于非常规 检验项目,以供各地区根据当地水质特点自行选择【6 】。虽然,水质检测项目从1 5 项发展 到目前的1 0 6 项指标,但浊度始终是饮水水质中的主要指标。随着我国制定标准能力的 增强,水质标准中对于浊度相应的规范也逐渐严格,我国水质标准中对浊度的要求从起 初的小于5n t u 改为目前的小于1n t u ,从国家相关部门对浊度标准控制的严格程度可 看出浊度在各水质指标中的重要地位。 1 2 2 浊度与水质的联系 在自然界的天然水体和水处理流程中的工艺水体内,都含有形形色色的颗粒物。一 般说来,它是指比溶解的低分子更大的各种高分子或多分布的实体。在环境水质学范畴 内,颗粒物的概念相当广泛。它把无机和有机的胶体、高分子、矿物微粒,有生命的细 茵、藻类等等都归类为颗粒物,实际上包括了粒度大于1 姗的所有微粒实体,其粒度上 限可达数十到上百微米i | 7 。 由于水中含有悬浮及胶体状态的微粒,使得原来无色透明的水产生浑浊的现象,其 浑浊的程度称为浊度。浊度的单位是用”度”来表示的,就是相当于l l 的水中含有l m g 的 s i 0 2 ( 或是非曲直m g 白陶土、硅藻土) 时,所产生的浑浊程度为1 度浊度单位为j t u , l j t u = 1 m g l 的白陶土悬浮体于1 l 水中产生的浑浊度。现代仪器显示的浊度是散射浊度 单位n t u ,1 n t u = 1 j t u 。最近,国际上认为,以乌洛托品一硫酸肼配制浊度标准重现性 较好,选作各国统一标准f t u ,1 f t u = l j t u ,而在我国,目前普遍以n t u 为浊度单位。 2 硕士论文太湖水强化混凝脱浊中试研究 浊度是一种光学效应,是光线透过水层时受到阻碍的程度表示水层对于光线散射和吸收 的能力。它不仅与悬浮物的含量有关,而且还与水中杂质的成分、颗粒大小、形状及其 表面的反射性能有关。 虽然浊度从表面上看仅仅是一种光学效应,但是从环境水质的角度来讲,水体浊度 的意义远远不仅仅于此。由于颗粒物群体广阔的表面和大量的活性基团,水体中各种微 污染物和营养物的大部分都吸附在它们的表面上,以它们为载体,随水流运动迁移,扩 大存在空间,更大范围地发挥其环境效应。在相对静止的水体中,颗粒物会沉降及沉积 到水体底层,把微污染物蓄积起来成为它们的暂时归宿。当环境条件有所变化或污染物 发生化学转化时,它们还可能更新释放出来,再次造成环境污染。因此,蓄积着污染物 的水体沉积物,可能成为潜在的二次污染源,在很长时期内发挥环境效应。这是国际上 染治理后期得到普遍关注而难以解决的环境问题【7 】。以本次研究中的太湖为例,太湖是 一个大型浅水湖泊,湖面开阔,在一般天气时浪高在5 0c m 左右,5 6 级风时,浪高可 达1m ,再加上太湖水浅底平,风浪对湖底表层3 5c m 的底泥具有扰动侵蚀作用,在 风浪作用下底泥极易再悬浮,从而使湖水中悬浮物增加,湖水混浊。有文献报道,太湖笔i 悬浮物中主要以无机颗粒为主,但有机物的比例也不小,达3 0 【引。如此高的有机质含 量一方面是由于蓝藻等动植物残体增加所致,另一方面高的有机质含量常常伴随着由于 人类生产活动所带来的有机污染物。 大量研究表明,悬浮颗粒去除率越高,自来水越安全、卫生。有文献报道,降低饮 用水浊度,有利于降低水中的藻密度,有机物含量,降低a m e s 致突变率m r ,降低病毒 传染病的发病病例,提高变形虫、贾第氏虫的去除率,对保障饮用水安全有重大作用【9 】。 由于介水致病微生物主要附生在悬浮颗粒表面或近表面;在有悬浮颗粒存在的情况下, 大多数重金属和有机物的固一液相分配以固体表面吸附为主;因此,悬浮颗粒往往积聚 了相当量的化学污染物及致病微生物,如果在净化过程中不能被有效去除,进入人体后 会产生毒副作用。而悬浮颗粒去除量大时,水体中吸附在悬浮颗粒上的污染物都将随之 而去除,自来水的化学安全性显著提高【l o 】。浊度本是悬浮物造成的光学感官指标,在我 国最初的饮用水水质标准中规定不超过5 n t u 。由于发现微污染物吸附在悬浮物上,指 标日趋严格,现已有要求达到1 n 1 u 以下。种种事实表明:饮用水的浊度不仅仅是一个 感官上的指标,在饮用水水处理中,浊度的去除与水质的好坏有着密切的联系。 1 3 给水处理技术发展概况 1 3 1 常规处理技术 以混凝、沉淀、过滤、消毒为主组成的水处理工艺是我国应用最广也是最基本的处 理手段【1 1 1 ,整套工艺以去除浊度为主要目标。 3 l 绪论硕士论文 1 3 1 1 混凝 水的混凝处理是常规给水处理系统中最常用的一种工艺。广义而言,混凝泛指自然 界与人工强化条件下所有分散体系( 水与非水或混合体系) 中颗粒物失稳聚集生长的过 程,通常其主要作用是去除水中悬浮颗粒和胶体微粒,同时也可以去除水中一部分有机 物【1 2 1 。其作用机理主要分三个方面:带正电的金属离子和带负电的胶体物胶体发生电中 和而脱稳凝聚;二是金属离子与溶解性有机物分子形成不溶性复合物而沉淀;三是胶体 颗粒在絮体表面的物理化学吸附1 3 j 。影响混凝效果的因素很多:混凝剂的种类、混凝剂 的投加量、原水水质、混凝p h 值、碱度、混凝搅拌程度以及混凝剂与助凝剂的投加顺 序等【1 4 j 。作为水处理的重要方法之一,混凝技术得以广泛地应用于各种水处理工艺流程 之中,决定着后续流程的运行工况,以及最终出水质量与成本费用,因而成为环境工程 的重要科技研究开发领域,在我国水处理高新技术的发展中占有重要地位【”】。 1 3 1 2 沉淀 给水处理中的沉淀工艺是指在重力作用下悬浮固体从水中的分离过程【1 6 1 。在常规处 理工艺中,沉淀工艺为混凝工艺的后续工艺,在该工艺段原水经混凝过后水中悬浮颗粒 集聚成的絮团通过重力作用逐渐沉淀,达到固液分离的效果。沉淀池根据具体布置可设 计成多种形式:竖流式沉淀池、幅流式沉淀池、平流式沉淀池以及斜管式沉淀池,但其 原理均为通过悬浮固体重力沉降以达到固液分离。沉淀工艺之所以被广泛采用主要是由 于沉淀截留的污泥量大,而且构造简单,管理方便以及经营费用低。对于悬浮物质含量 较多的原水,沉淀则是净水中必不可少的手段。在一般情况下,沉淀池在整个净水系统 中担负着去除8 0 9 0 的悬浮固体【1 。7 1 。 1 3 1 3 过滤 常规给水处理中的过滤工艺段有着去除混凝沉淀后未能去除的微细颗粒和胶体物 质,提高出水水质的作用。过滤工艺的基本原理为截留以及吸附,在饮用水处理中,滤 池常置于沉淀池之后,消毒与膜滤之前,不可或缺【l 引。 1 3 1 4 消毒 消毒作用主要是杀死绝大多数病原微生物,防止水致传染病危害。加氧化性消毒剂 可同时氧化水中有机物和还原性污染物,降低c o d m i i ,给水处理中,原水经混凝、沉淀 和过滤,能去除大量悬浮物和粘附的细菌,但过滤出水还远远不能达到饮用水的细菌指 标。以大肠菌为例,一般水质较好的河水约含大肠菌1 0 0 0 0 个l 。混凝沉淀可以去除 5 0 9 0 的大肠菌,过滤后可去除水中9 0 的大肠菌,但出水中还会含有大肠菌1 0 0 个l 。我国饮用水水质标准为大肠菌小于3 个l ,所以最后必须进行消毒【1 引。但由于消 毒工艺并没有固液分离的过程,故消毒工艺段基本没有除浊的作用。 4 硕士论文 太湖水强化混凝脱浊中试研究 1 3 2 预处理技术 预处理技术是采用适当物理、化学和生物的处理方法,对水中的污染物进行初级去 除,使常规处理能更好地发挥作用,减轻常规处理和深度处理的负担,改善和提高饮用 水水质。按对污染物的去除途径,常见预处理技术可分为氧化法和吸附法,氧化法又可 分为化学氧化法和生物氧化法【1 9 1 。 1 3 2 1 氧化法 化学氧化法主要依靠氧化剂的氧化能力,破坏水中污染物的结构,转化或分解污染 物,有效降低水中的有机物含量,杀灭影响给水处理工艺的藻类,改善混凝效果,降低 混凝剂的用量。化学氧化预处理一般有三种方法:预氯氧化、高锰酸钾及其复合剂预氧 化、臭氧氧化。 生物氧化法主要借助微生物群体的新陈代谢活动,去除水中的污染物。目前生物氧 化法主要有:接触氧化法、塔式生物滤池、生物转盘、淹没式生物滤池、生物流化床等。 与化学氧化处理工艺相比,生物预处理技术可以有效改善混凝沉淀性能,减少混凝剂用 量,能去除传统工艺不能去除的污染物,同时能使后续工艺简单易行,减少了水处理中 氯的消耗量,出水水质明显改善。 1 3 2 2 吸附法 吸附预处理技术往往是利用吸附剂强大的吸附性能、交换作用或改善混凝沉淀效果 来去除水中污染物,主要有粉末活性炭吸附和沸石吸附等。该技术对氨氮、氯化消毒副 产物、极性小分子有机物均具有较强的去除能力【2 0 】。 1 3 3 深度处理技术 在饮用水常规处理工艺基础上出现的深度处理技术以去除水中溶解性有机物和消 毒副产物为目的,有效提高和保证了饮用水水质。目前饮用水深度处理技术已取得了长 足的进步,各种经济实用的处理技术正逐渐得到广泛的应用【2 1 1 。应用较为广泛的深度处 理技术有:膜分离技术、生物活性炭、光氧化、超声空化技术等。深度处理技术的发展 为今后的直饮水目标做好了准备,但由于深度处理技术目前成本过高,故暂时难以在国 内普及。 1 3 4 强化常规处理技术 强化常规处理技术是在水厂传统工艺上对某个工艺段进行强化及改进以达到改善 出水目的的一种手段。目前强化常规处理技术主要有以下两种方法。 1 3 4 1 强化过滤 强化过滤主要通过发挥滤料与脱稳颗粒的接触凝聚作用而去除浊度、细菌。强化过 滤的手段主要有:投加助滤剂、变革滤料、改进滤池反冲洗工艺、优化常规过滤工艺等 5 l 绪论硕士论文 手段。强化过滤给水处理技术在一定条件下均能有效去除饮用水水源中的杂质【2 2 1 。但 是强化过滤是基于一定的沉淀出水条件下才能有较好处理效果,若前续工艺沉淀出水浊 度过高,也往往容易出现滤池浊度击穿现象。 1 3 4 2 强化混凝 所谓强化混凝是指为提高常规混凝效果所采取的一系列强化措施,即确定混凝的最 佳条件( 混凝剂种类、混凝剂投加量、p h 值等) ,增大絮体对水中超微颗粒的碰撞、吸 附和脱除作用,降低出水浊度,提高对有机物的去除率瞄】。强化混凝是具有多重目标的 混凝过程,其处理目标包括最大化去除颗粒物和浊度;最大化去除t o c 和d b p 前驱物; 减小残余混凝剂的含量;减少污泥产量;最小化生产成本【2 4 】。从工艺研究的角度而言, 强化混凝强调在现有水处理工艺和设施上的改进与提高也即强化,而改进与提高的方式 有多种:可以通过对混凝剂的筛选优化、对混凝剂剂量优化、也可以通过对混凝反应过 程条件等的控制强化来实现,在以上一系列强化混凝方法中,优化药剂的方法由于不需 要新的构筑物,初期资金投入较小,工艺比较简单,日常运行维护费用较低,是提高常 规混凝效果,在保证浊度去除率的同时提高水中有机物的去除率,较经济、实用的一种 工艺【2 5 1 。 1 4 国内外关于强化混凝工艺研究概述 针对强化混凝的研究力度空前加大,同时也备受各方关注,对水体中颗粒及有机物 的特性和去除规律也进行了大量的、充分的研究工作,总结出一些规律【2 6 2 7 】。通过研究 发现,强化混凝过程中混凝剂的投加量是提高浊度、有机物去除率的重要影响因素,另 外温度、p h 值等对此也有一定影响,更为重要的是针对水质进行混凝剂的种类的优化 及助凝剂的添加。现对强化混凝中几大重要因素对混凝的影响的研究进行一个概述。 1 4 1 混凝剂投加量 混凝剂的投加量直接影响强化混凝对水中浊度以及有机物的去除效果。国外许多专 家的研究都表明随着投药量的增加,出水余浊不断降低,t o c 的去除率不断提高【2 6 】。 s t u a r t 等人【2 7 1 研究了以明矾为混凝剂,在不同投药量下,强化混凝对水源水的1 o c 和 紫外吸光值的去除规律。他们发现,一般来说,随着投药量的增加,两者的去除率都在 不断提高,而后者的去除率始终要大于前者。g i l 等人【2 8 】的研究证实了上面提到的投药 量对有机物去除率的影响规律。然而过量的混凝剂必然引起处理费用和污泥量的增加, 并使出水中金属离子浓度增加。因此,应根据具体水质情况优选混凝剂,并利用混凝剂 投加量与利用效率之间存在的关系确定最佳投量。 1 4 2 p h 值 一般认为低p h 值有利于有机物的去除,这与强化混凝的作用机理有关。在低p h 值、 6 硕士论文 太湖水强化混凝脱浊中试研究 高混凝剂用量的强化混凝条件下能形成大量金属氢氧化物,改善混凝剂水解产物的形态 且使其正电荷密度上升;同时低p h 条件会影响有机物离解度和改变水中有机物的存在形 态,有机物质子化程度提高,电荷密度降低,进而降低其溶解度及亲水性,成为较易被 吸附的形态,吸着到大量存在的金属氢氧化物颗粒上共沉淀,这样可提高水中溶解态有 机物的去除率,进而提高水中有机物总的去除率【2 9 3 1 1 。 虽然较低p h 值有利于强化混凝对天然有机物的去除,但并不是p h 值越低越好。 飚m b e r l y 等人【3 2 j 对1 6 个强化混凝工艺进行了调查,发现去除有机物的最优p h 值是 5 5 6 5 。d e m p s e y 等人【3 3 1 认为,对于铝盐混凝剂,去除有机物的最优p h 值在5 附近, 对于铁盐混凝剂,则是在4 附近。 p h 值的调整对混凝效果有较大影响,但是在工业实际生产中,调节原水的p h 值不 易实现刚,而且有时还会腐蚀管线,所以改善p h 并不实际。 1 4 3 温度 低温对于混凝具有负面的影响作用。有研究显示,低温并不影响t o c 的去除,但是 对于相对分子质量小于1 0 0 0 的低相对分子质量有机物和色度起负面影响。温度的影响是 复杂的,低温可能造成水的粘度上升,阻碍混凝剂的扩散和絮体沉降;而且可以影响水 解动力学平衡,影响金属氢氧化物的形成;另外影响水的离子积常数,降低离子积常数, 从而降低水中氢氧根的浓度。同时,低温可能造成形成的絮体密实度较低、絮体较小, 导致分离效果差【3 5 1 。 1 4 4 混凝强度 混凝强度、搅拌方式等对混凝效果有着不同影响作用。对于不同水质状况的适应性 与最优工艺条件( 如搅拌强度与反应时间等) ,明确絮体的形成机制、控制方式与强化工 艺,以达到对于原始水体颗粒物以及混凝过程形成的颗粒物的最优去除,相应的达到对 有机物的优化去除,是非常重要的。e b i e 等研究发现,较高的快速搅拌对混凝效果的影 响较大【3 6 】,快搅速度大,可使混凝剂迅速分散于水中,并加快水解反应的进行,促进了 小颗粒的脱稳过程,同时也促使了水中较大颗粒碰撞和接触,也就有利于絮体的成长【3 7 1 。 因此,适当强的混凝搅拌强度有利于原水的混凝,可以在一定程度上改善混凝药剂对 原水的混凝效果。 1 4 5 混凝剂种类和助凝剂的添加 不同的混凝剂,对水中胶体颗粒的作用机理有所不同,因而其去除效果也有所差异。 而对于如前所述的不同水质,也要求有最佳的混凝剂与之相对应。针对不同的水源水质 开发与之对应的混凝药剂,在不改变现行自来水厂的处理设备及工艺条件下增加成本最 少,最为简便,是一系列强化混凝方法中最易实现的措施。混凝剂近代发展的主流是各 7 l 绪论硕士论文 种有机和无机高分子絮凝剂。 1 4 5 1 无机高分子混凝剂 无机高分子混凝剂是一类新型的水处理药剂,当前在日本、俄国、西欧、美国都已 有相当规模的生产和应用,在中国已是最主要的品种【3 引。无机高分子混凝剂是从正盐水 解为氢氧化物过程中形成的中间产物,它们是目前供水企业主要使用的混凝剂,多年来 发挥了很好的作用【3 9 j 。但也有研究发现,对于不同水质的原水,并非高分子无机聚合形 态的混凝剂效果要好,在某些湖泊、水库水源,聚合铝的混凝效果甚至不如传统低分子 混凝剂硫酸铝的【删。此外,随着水源水质的受污染程度的增加,例如:湖泊富营养化 导致的藻类高发期,长江受污染水季节高温高浊和冬季低温低浊期,单独使用无机混凝 剂往往不能满足混凝沉淀出水水质的基本需要。 1 4 5 2 有机高分子絮凝剂 有机高分子絮凝剂是近年来絮凝剂发展的一大热点,一般均为线型高分子聚合物, 与无机混凝剂配合使用,具有用量小,产生的絮体粗大,效率高,产生的污染容易处理 等优点【3 8 1 。中国科学院生态环境研究中心结合我国实际情况,通过阳离子型p 枷对传统 絮凝剂进行改性,研制出了适合我国北方及南方水质特征的高效絮凝剂,能较传统絮凝 剂将有机物去除率提高2 0 3 5 【4 2 4 3 1 。但有机高分子絮凝剂的缺点在于大多数天然有 机高分子,如甲壳素,存在来源有限,相对分子质量低和单一的缺陷使应用和功效受限, 而大多数有机高分子本身或其水解产物有毒,使其应用受到一定限制,如:丙烯酰胺均 聚物及其共聚物等。另外国内也有含少量丙烯酰胺类扩链剂的改性二甲基二烯丙基氯化 铵( d i m e t l l y l d i a l l y l a m m o i l i 啪c 1 1 l 耐d e ,简称d m ) 共聚物产品( 如h c a 系列等) ,或相对分子 质量低的p d m 产品作助凝剂用于长江三峡水、巢湖高藻水的实际饮用水生产的报道【4 3 删。目前国内有机高分子絮凝剂的开发热点在于二甲基二烯丙基氯化铵( d m ) 自身聚合得 到的均聚物( p o l y d i m e t l l y l d i a l l y l 觚l l i l o l l i 啪c l l l o r i d e ,简称p d m ) ,该均聚物是一种具有 特殊功能的水溶性阳离子型高分子聚合物,具有大分子子链上所带正电荷密度高、水溶 性好、分子量易于控制、高效无毒等优点。美国把p d m 作为饮用水絮凝剂,已获得联邦 政府的批准,且在水厂中使用己较普遍【4 3 】。南京理工大学化工学院3 0 2 助剂组采用自行 合成研制的,相对分子质量系列化的有机阳离子产品聚二甲基二烯丙基氯化铵( p d m ) 与 多种无机混凝剂复合,对不同季节不同水质的长江水、太湖水、宁波内河水进行混凝脱 浊处理,取得了较好脱浊效果【4 9 1 。 纵观絮凝剂的现状可以看出:絮凝剂的品种繁多,从低分子到高分子,从单一型到 复合型,总的趋势是向廉价实用、无毒高效的方向发展,其中更有前途的可能是无机盐 p d m 复合药剂,该系列产品在我国实际生产中的应用还较少,应该是絮凝剂应用进一 步开发研究的方向。 8 硕士论文太湖水强化混凝脱浊中试研究 1 5 国内关于对湖泊水强化混凝研究概述 国内姚萱在处理巢湖高藻水时,通过实验室及生产上的应用,证实在使用无机混凝 剂的同时借助h c a 1 作助凝剂处理高藻水具有明显效果,适用范围也较广,在保证出水 水质的前提下,当投加量在o 1 0 2 5m g l 时可节约药耗1 5 3 0 ,降低制水成本 1 2 7 2 3 6 。王桂荣等研究了h c a ( 一种以二甲基二烯丙基氯化铵为主体的阳离 子型有机高分子聚合物) 在给水除藻中的作用,实验结果表明,在p h 值在7 8 的中性原 水中,先投聚合氯化铝2 0m g l 再投聚二甲基二烯丙基氯化铵0 1 o 2m g l ,出水沉淀 后浊度可降至3n t u ,除藻率为8 6 1 【4 5 l 。h c a 在国内虽已实现产业化,但该产品的相 对分子质量较低,而且不是纯阳离子d m 聚合物,其中含丙烯酰胺扩链剂,影响了其使 用效果及其使用安全性。 南京理工大学3 0 2 助剂组通过混凝烧杯实验对富营养化太湖水体进行了系列p d m 复合药剂的处理效果研究。初步探索了以p :a c 、p f s 、a s 等无机混凝剂为基,用特征 黏度系列化p d m 进行改性得到的无机盐p d m 系列化稳定型复合混凝剂,用于高温高 藻和低温低藻的太湖含藻水的强化混凝脱浊处理。结果证实p d m 能明显提高无机混凝 剂的脱浊除藻效果与沉淀性能。在与水厂实际生产相近的混凝条件下,对于各类微污染 原水特别是含藻及有机污染物太湖水,使用该复合混凝剂,在达到现有出水水质要求时, 可减铝盐1 0 5 0 ;沉淀出水藻类去除率提高l 5 。使用复合混凝剂所含铝盐量 与现有投加量相同时,可减用氯量或其他氧化剂3 0 5 0 ;沉淀出水藻类去除率提高 3 1 0 ,去除率达9 9 以上,浊度郢5 n t u 。复合混凝剂中p d m 的含量越高,p d m 的特征黏度越高,脱浊除藻效果与沉淀性能越好m 哪】。 1 6 研究问题的提出 1 6 1 太湖水处理中存在问题及解决思路 太湖是经济发达的长江三角洲地区的重要淡水资源,是上海、苏州、无锡等大中城 市最重要的供水源地。但是,近年来,对太湖水体的人为污染使水质恶化,有机物对水 中胶体颗粒产生很强的保护作用,给以去除浊度为主要目标的常规水处理带来了极大困 难,常规处理工艺逐渐难以应付,采用临时措施处理不当则还会引发供水水质事故。 采用有机高分子助凝剂强化混凝处理近年来为人们所重视。聚二甲基二烯丙基氯化 铵( p d m ) 是一种水溶性阳离子型高分子聚合物,其分子链上所带正电荷密度高,水溶性 好,相对分子质量易于控制,具有高效、无毒等优点。本课题组通过混凝烧杯实验对富 营养化太湖水体进行了系列p d m 复合药剂的处理效果研究,结果表明p d m 能够明显 提高无机混凝剂对富营养化太湖水的脱浊效果【4 3 1 。但是,该结果仅为实验室烧杯试验 9 l 绪论 硕士论文 结果,p d m 应用于太湖水实际制水生产的强化混凝处理效果还有待验证,另由于烧杯 实验仅限于混凝沉淀工艺段,致使目前对使用p d m 强化混凝太湖水对常规给水处理中 其它工艺段的影响不明。而直接将p d m 应用于实际生产一方面会产生高额的实验费用, 另一方面对供水水质安全有一定的风险。 根据以上存在问题,结合太湖周边水厂实际制水生产工艺建造中试生产线,可对现 有p d m 系列化稳定型复合混凝剂用于有机污染物原水强化混凝处理工艺技术进行中试 放大研究,使原有从现场烧杯实验中获得的关于含p d m 的系列化稳定型复合混凝剂在 强化混凝处理含藻及有机污染物原水方面的功能在工业中试规模上得以放大验证,同时 补充完善原烧杯实验中未能完成部分的研究内容并直接在工业中试规模生产线实验验 证,进而起到减少系列化稳定型复合混凝剂在实际生产线上直接实验和应用带来的高额 实验费用和对供水水质安全产生影响的风险。 1 6 2 本研究的主要内容及现实意义 本次研究在太湖周边某水厂实际生产工艺基础上安装了两套中试生产线,研究特征 黏度及复合配比系列化的含p d m 稳定型复合混凝剂对富营养化太湖水的混凝脱浊效 果,主要内容包括以下几点: ( 1 ) p ! a c p d m 复合混凝剂与a s p d m 复合混凝剂应用于富营养化太湖水强

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论